Expression of variant dihydrofolate reductase with decreased binding affinity to antifolates in MOLT-3 human leukemia cell lines resistant to trimetrexate. 1995

H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
Department of Clinical Pathology, Tokai University School of Medicine, Kanagawa, Japan.

Various alterations of the dihydrofolate reductase (DHFR) gene are involved in resistance. In order to understand the mechanism that induce such gene alterations in human leukemia cells, we studied the expression products of DHFR gene in trimetrexate (TMQ)- and/or methotrexate (MTX)-resistant sublines derived from a MOLT-3 human leukemia cell line. A 200-fold TMQ-resistant subline (MOLT-3/TMQ200) expressed the mutated DHFR mRNA, with a base change (T-->C) at the second position of codon 31, as well as the wild type gene. A MTX-resistant subline derived from MOLT-3/TMQ200 (MOLT-3/TMQ200-MTX500) showed a further increase in the expression of the mutated DHFR mRNA, compared to MOLT-3/TMQ200, with a marked decrease of expression of the wild type DHFR mRNA, which is confirmation of amplification of the mutated DHFR gene. By contrast, a 10,000-fold MTX-resistant subline (MOLT-3/MTX10,000) over-expressed the wild type DHFR mRNA, which is confirmation of amplification of the wild type gene. Increased levels of the DHFR enzyme in these sublines were proportional to expression levels of the DHFR mRNA. The DHFR enzyme expressed in MOLT-3/TMQ200-MTX500 cells showed a 40-fold increase in the Ki values for both MTX and TMQ, compared with values for the wild type DHFR expressed in both MOLT-3/MTX10,000 and its parent cell line. These findings suggest that the altered DHFR gene, which was introduced in MOLT-3 cells by exposure to TMQ, gave rise to a variant enzyme with reduced affinity to antifolates, and that complex DHFR alterations confer drug-resistant phenotypes in antifolate-resistance. Structural difference between the antifolates could be important in the introduction of the differential DHFR gene alterations in the antifolate resistance.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008727 Methotrexate An antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of TETRAHYDROFOLATE DEHYDROGENASE and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. Amethopterin,Methotrexate Hydrate,Methotrexate Sodium,Methotrexate, (D)-Isomer,Methotrexate, (DL)-Isomer,Methotrexate, Dicesium Salt,Methotrexate, Disodium Salt,Methotrexate, Sodium Salt,Mexate,Dicesium Salt Methotrexate,Hydrate, Methotrexate,Sodium, Methotrexate
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D013762 Tetrahydrofolate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3. Dihydrofolate Dehydrogenase,Dihydrofolate Reductase,Folic Acid Reductase,Acid Reductase, Folic,Dehydrogenase, Dihydrofolate,Dehydrogenase, Tetrahydrofolate,Reductase, Dihydrofolate,Reductase, Folic Acid

Related Publications

H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
June 1993, Leukemia research,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
February 1998, Cancer letters,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
April 1970, Biochemical pharmacology,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
January 1991, Cancer research,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
January 1984, Oncology,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
January 2000, Oncology research,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
July 2003, Journal of medicinal chemistry,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
February 1988, Cancer research,
H Miyachi, and Y Takemura, and H Kobayashi, and Y Ando
May 1993, Biochemistry,
Copied contents to your clipboard!