Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA. 1994

M Kressel, and P Groscurth
Institute of Anatomy, University of Zürich, Switzerland.

The occurrence and spatial distribution of intracellular DNA fragmentation was investigated by in situ 3' end labelling of DNA breaks in K562 cells treated in such a way to cause either apoptotic or necrotic cell death. The localisation of DNA breaks was examined by confocal laser microscopy and compared with the electron-microscopic appearance of the cells. In addition, the number of cells with fragmented DNA was counted and compared with the number of dead cells, as determined by the nigrosin dye exclusion test. Apoptosis was induced by cultivation of the cells in the presence of actinomycin D. Cells undergoing apoptosis were characterised by massive intracellular DNA fragmentation that was highly ordered into successive steps. Cells in early stages of the apoptotic process had DNA breaks diffusely distributed in the entire nucleus, except the nucleolus, with crescent-like accumulations beyond the nuclear membrane. In the more advanced stages, the nucleus was transformed into many round bodies with intense labelling. Intracellular accumulations of fragmented DNA corresponded exactly to electron-dense chromatin seen in the electron microscope, whereas diffuse DNA breaks had no morphological correlate at the ultrastructural level. In necrosis induced by ionomycin, NaN3, or rapid freezing combined with thawing, no DNA fragmentation occurred at the onset of cell death, but appeared 24 h later. This fragmentation was not characterised by a unique morphology, but represented the breakdown of the chromatin in the configuration remaining after cell death. Therefore, apoptosis is characterised by DNA fragmentation that proceeds in a regular orderly sequence at the beginning of cell death, and can be detected by in situ 3'end labelling of DNA breaks.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D018613 Microscopy, Confocal A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible. Confocal Microscopy,Confocal Microscopy, Scanning Laser,Laser Microscopy,Laser Scanning Confocal Microscopy,Laser Scanning Microscopy,Microscopy, Confocal, Laser Scanning,Confocal Laser Scanning Microscopy,Confocal Microscopies,Laser Microscopies,Laser Scanning Microscopies,Microscopies, Confocal,Microscopies, Laser,Microscopies, Laser Scanning,Microscopy, Laser,Microscopy, Laser Scanning,Scanning Microscopies, Laser,Scanning Microscopy, Laser

Related Publications

M Kressel, and P Groscurth
March 2001, Cellular and molecular life sciences : CMLS,
M Kressel, and P Groscurth
June 1998, Journal of dermatological science,
M Kressel, and P Groscurth
January 1994, Cell death and differentiation,
M Kressel, and P Groscurth
December 2001, The Journal of general virology,
M Kressel, and P Groscurth
December 1996, Gastroenterology,
M Kressel, and P Groscurth
May 2010, Proceedings of the National Academy of Sciences of the United States of America,
M Kressel, and P Groscurth
August 2017, World journal of microbiology & biotechnology,
Copied contents to your clipboard!