Transient DNA breaks associated with programmed genomic deletion events in conjugating cells of Tetrahymena thermophila. 1995

S V Saveliev, and M M Cox
Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison 53706.

Thousands of programmed genomic deletion events occur during macronuclear development in Tetrahymena thermophila. Two of the deleted segments, called M and R, have been particularly well-characterized. Using ligation-mediated PCR, we have detected DNA strand breaks that correlate temporally and structurally with the deletion events in the M and R regions. The ends appear at positions that correspond precisely to boundaries of deleted sequences, as defined by observed chromosomal junctions found after deletion is complete. They occur exclusively during the known DNA rearrangement period in macronuclear development. The breaks are staggered by 4 bp in the complementary strands. Several alternative breaks were found at the end of one deleted region, consistent with multiple alternative chromosomal junctions detected previously. The free 5' ends generated at the breaks are phosphorylated. A purine residue always occurs at the free 3' ends, with an adenosine appearing in 11 of 12 cases. Patterns found in the detected break sites suggest rules that define the ends of the deleted segments within a transposon-like deletion mechanism.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011685 Purine Nucleotides Purines attached to a RIBOSE and a phosphate that can polymerize to form DNA and RNA. Nucleotides, Purine
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015321 Gene Rearrangement The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development. DNA Rearrangement,DNA Rearrangements,Gene Rearrangements,Rearrangement, DNA,Rearrangement, Gene,Rearrangements, DNA,Rearrangements, Gene
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

S V Saveliev, and M M Cox
September 1989, The Journal of cell biology,
S V Saveliev, and M M Cox
June 1981, Experimental cell research,
S V Saveliev, and M M Cox
October 2007, Eukaryotic cell,
S V Saveliev, and M M Cox
November 2011, G3 (Bethesda, Md.),
S V Saveliev, and M M Cox
January 2000, Methods in cell biology,
Copied contents to your clipboard!