Nerve growth factor-induced differentiation of PC12 cells employs the PMA-insensitive protein kinase C-zeta isoform. 1994

E S Coleman, and M W Wooten
Division of Zoology, Auburn University, AL 36849.

To elucidate the role of protein kinase C (PKC) in nerve growth factor (NGF)-induced differentiation, PMA downregulation of pheochromocytoma (PC12) cells was undertaken. Prolonged treatment (2 d) of PC12 cells with PMA (1 microM) resulted in depleting the cells of alpha, beta, delta, and epsilon-PKC isoforms, but had no effect on the expression of the atypical PKC isoform zeta. PC12 cells, which expressed only PKC zeta, were evaluated for their responses to NGF. Removal of the PMA-sensitive PKC isoforms enhanced the ability of NGF to promote neurite extension. Both the percentage cells with neurites and length of neurites were increased in the PMA-treated cells, whereas no effect was observed on the number of neurites per cell or branching of individual neurites. In addition, PMA downregulation resulted in an increase in the incorporation of 3H-thymidine without any significant effect on the expression of c-fos. Addition of NGF to PC12 cells depleted of the PMA-sensitive PKC isoforms resulted in the activation of PKC zeta (Wooten et al., 1994). To test whether the transient activation of PKC zeta is a necessary component of the neuritogenetic pathway, antisense oligonucleotide strategy was utilized to remove this particular PKC isoform. The addition of a 20-bp antisense oligonucleotide directed against the 5' coding sequence of PKC zeta attenuated NGF-induced neurite outgrowth in PC12 cells lacking PMA-sensitive PKC isoforms. Sense oligonucleotide directed at the same site was without effect on NGF responses. These data indicate that PKC zeta comprises a portion of the NGF pathway and underscores the importance of this isoform in neuronal differentiation. Moreover, these findings demonstrate that the PMA-insensitive pathway, which was previously characterized as PKC-independent, and the neurite induction pathway are synonymous and mediated by PKC zeta.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite
D016716 PC12 Cells A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation. Pheochromocytoma Cell Line,Cell Line, Pheochromocytoma,Cell Lines, Pheochromocytoma,PC12 Cell,Pheochromocytoma Cell Lines
D016762 Genes, fos Retrovirus-associated DNA sequences (fos) originally isolated from the Finkel-Biskis-Jinkins (FBJ-MSV) and Finkel-Biskis-Reilly (FBR-MSV) murine sarcoma viruses. The proto-oncogene protein c-fos codes for a nuclear protein which is involved in growth-related transcriptional control. The insertion of c-fos into FBJ-MSV or FBR-MSV induces osteogenic sarcomas in mice. The human c-fos gene is located at 14q21-31 on the long arm of chromosome 14. c-fos Genes,fos Genes,v-fos Genes,c-fos Proto-Oncogenes,v-fos Oncogenes,c fos Genes,c fos Proto Oncogenes,c-fos Gene,c-fos Proto-Oncogene,fos Gene,v fos Genes,v fos Oncogenes,v-fos Gene,v-fos Oncogene

Related Publications

E S Coleman, and M W Wooten
May 1990, FEBS letters,
E S Coleman, and M W Wooten
June 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
E S Coleman, and M W Wooten
February 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!