Expression of multiple connexins in cultured neonatal rat ventricular myocytes. 1995

B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110.

Three gap junction proteins have been identified in mammalian cardiac myocytes: connexin43 (Cx43), connexin45 (Cx45), and connexin40 (Cx40). These proteins form channels with different electrophysiological properties and have different distributions in cardiac tissues with disparate conduction properties. We characterized the expression, phosphorylation, turnover, and subcellular distribution of these connexins in primary cultures of neonatal rat ventricular myocytes. Cx43, Cx45, and Cx40 mRNA were specifically detected in RNA blots. Immunofluorescent staining with antibodies specific for Cx43 and Cx45 revealed punctate labeling at appositional membranes, but no immunoreactive Cx40 was detected. Double-label immunofluorescence confocal microscopy of cultured myocytes revealed colocalization of Cx43 and Cx45. Cx43 and Cx45 were both identified by immunoprecipitation from [35S]methionine-labeled cultures, but anti-Cx40 antibodies did not precipitate any radiolabeled protein. Phosphorylated forms of both Cx45 and Cx43 were immunoprecipitated from cultures metabolically labeled with [32P]orthophosphate. Phosphoamino acid analysis demonstrated that Cx45 was modified on serine residues, and Cx43 was phosphorylated on serine and threonine residues. Pulse-chase labeling experiments demonstrated that the half-lives of Cx43 and Cx45 were 1.9 and 2.9 hours, respectively. Thus, both Cx43 and Cx45 turn over relatively rapidly, suggesting that myocardial gap junctions have the potential for dynamic remodeling. The results implicate multiple mechanisms of gap junction regulation that may differ for different connexins.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017630 Connexins A group of homologous proteins which form the intermembrane channels of GAP JUNCTIONS. The connexins are the products of an identified gene family which has both highly conserved and highly divergent regions. The variety contributes to the wide range of functional properties of gap junctions. Connexin,Connexin Complex Proteins,Gap Junction Proteins,Gap Junction Channel Proteins,Gap Junction Protein,Junction Protein, Gap,Junction Proteins, Gap
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
March 2002, Pflugers Archiv : European journal of physiology,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
June 1997, The American journal of physiology,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
November 2007, American journal of physiology. Heart and circulatory physiology,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
April 2005, Cardiovascular research,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
January 1997, Heart and vessels,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
March 1993, Biochimica et biophysica acta,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
August 1993, Biochemical and biophysical research communications,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
April 1999, Cardiovascular research,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
September 1996, Cardiovascular research,
B J Darrow, and J G Laing, and P D Lampe, and J E Saffitz, and E C Beyer
August 2005, American journal of physiology. Cell physiology,
Copied contents to your clipboard!