Nerve-dependent recovery of metabolic pathways in regenerating soleus muscles. 1994

S Sesodia, and R M Choksi, and P M Nemeth
Department of Neurology, Washington University School of Medicine, St Louis, MO 63110.

The metabolic recovery potential of muscle was studied in regenerating soleus muscles of young adult rats. Degeneration was induced by subfascial injection of a myotoxic snake venom. After regeneration for selected periods up to 2 weeks, samples of whole muscle were analysed for hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11), lactate dehydrogenase (EC 1.1.11.27), adenylokinase (EC 2.7.4.3), creatine kinase (EC 2.7.3.2), malate dehydrogenase (EC 1.1.11.37), citrate synthase (EC 4.1.3.7) and beta-hydroxyacyl CoA dehydrogenase (EC 1.1.1.35). Lactate dehydrogenase, adenylokinase, malate dehydrogenase and beta-hydroxyacyl CoA dehydrogenase were also measured in individual fibres of muscle regenerating up to 4 weeks. We found that in the presence of nerve there was complete recovery of muscle metabolic capacity. However, there were differences in the rate of recovery of the activity of enzymes belonging to different energy-generating pathways. Lactate dehydrogenase, an enzyme representing glycolytic metabolism, reached normal activity immediately upon myofibre formation, only 3 days after venom injection, while oxidative enzymes required a week or more to reach normal activity levels. The delay in oxidative enzyme recovery coincided with physiological parameters of reinnervation. Therefore, to further test the role of nerve on the metabolic recovery process, muscle regeneration was studied following venom-induced degeneration coupled with denervation. In the absence of innervation, most enzymes failed to recover to normal activity levels. Lactate dehydrogenase was the only enzyme to achieve normal levels, and it did so as rapidly as in innervated-regenerating soleus muscles. The remainder of the glycolytic enzymes and the high energy phosphate enzymes recovered only partially. Oxidative enzymes showed no recovery and were severely reduced in the absence of reinnervation.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002952 Citric Acid Cycle A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds. Krebs Cycle,Tricarboxylic Acid Cycle,Citric Acid Cycles,Cycle, Citric Acid,Cycle, Krebs,Cycle, Tricarboxylic Acid,Cycles, Citric Acid,Cycles, Tricarboxylic Acid,Tricarboxylic Acid Cycles
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females

Related Publications

S Sesodia, and R M Choksi, and P M Nemeth
June 2022, Journal of muscle research and cell motility,
S Sesodia, and R M Choksi, and P M Nemeth
June 1994, Experientia,
S Sesodia, and R M Choksi, and P M Nemeth
January 1991, Acta neuropathologica,
S Sesodia, and R M Choksi, and P M Nemeth
May 1951, The Australian journal of experimental biology and medical science,
S Sesodia, and R M Choksi, and P M Nemeth
March 1991, Experimental physiology,
S Sesodia, and R M Choksi, and P M Nemeth
May 2001, Archives of histology and cytology,
S Sesodia, and R M Choksi, and P M Nemeth
December 2000, Muscle & nerve,
S Sesodia, and R M Choksi, and P M Nemeth
April 1990, Pflugers Archiv : European journal of physiology,
S Sesodia, and R M Choksi, and P M Nemeth
June 1980, The Journal of physiology,
S Sesodia, and R M Choksi, and P M Nemeth
July 2005, Journal of cellular physiology,
Copied contents to your clipboard!