Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin gene-related peptide in the midbrain periaqueductal grey in the rat. 1994

G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
Molecular Neuropharmacology Laboratory, UMDS Division of Biochemistry and Molecular Biology, University of London, Guy's Hospital, United Kingdom.

The midbrain periaqueductal grey matter (PAG) has numerous functional roles that include mediating nociceptive inhibition and integrating behavioural and physiological responses to potentially threatening or stressful stimuli. Underlying these behaviours is the diverse interconnectivity of this region, and it is possible that neurochemical subdivisions within the PAG reflect the functional properties of the different PAG regions. In this study, using in situ hybridization, we have investigated the distribution in the rat PAG of the messenger ribonucleic acids (mRNAs) encoding seven neuropeptides: enkephalin (ENK), substance P (SP), somatostatin (SST), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP). Each peptide mRNA had a distinct topographical distribution in the PAG. Preproenkephalin A (ENK) mRNA-expressing cells were found at all levels of the PAG in three distinct longitudinal columns. Preprotachykinin A (SP)-expressing cells were found at all levels of the PAG, principally in the Edinger-Westphal nucleus and the lateral and dorsal PAG. There was a column of neurons producing mRNA-encoding somatostatin that extended along the rostrocaudal extent of the ventrolateral PAG; there were also labelled cells in the dorsal and dorsolateral subdivisions at some levels of the PAG. Galanin mRNA-producing neurones were limited to the dorsal raphe nucleus and to a second population in the ventral border of the aqueduct. VIP mRNA-producing neurones were found in very localized regions of the PAG, including the cell-sparse region immediately ventral to the aqueduct and the ventral part of the dorsal raphe nucleus. NPY mRNA-producing neurones were localized mainly in some cells of the Edinger-Westphal nucleus and dorsal raphe nucleus. CGRP mRNA-expressing neurons were limited to the oculomotor and trochlear nucleus. The results showed a topographical distribution of neuropeptides over the rostrocaudal extent of the PAG that is compatible with the emerging theory that the anatomical and functional specificity of the PAG is expressed in the form of longitudinally arranged neuronal columns that extend for varying distances along the rostrocaudal axis of the midbrain PAG.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010487 Periaqueductal Gray Central gray matter surrounding the CEREBRAL AQUEDUCT in the MESENCEPHALON. Physiologically it is probably involved in RAGE reactions, the LORDOSIS REFLEX; FEEDING responses, bladder tonus, and pain. Mesencephalic Central Gray,Midbrain Central Gray,Central Gray Substance of Midbrain,Central Periaqueductal Gray,Griseum Centrale,Griseum Centrale Mesencephali,Periaqueductal Gray Matter,Substantia Grisea Centralis,Substantia Grisea Centralis Mesencephali,Central Gray, Mesencephalic,Central Gray, Midbrain,Gray Matter, Periaqueductal,Gray, Central Periaqueductal,Griseum Centrale Mesencephalus,Periaqueductal Grays, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide

Related Publications

G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
January 1988, Histochemistry,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
August 1998, Neurogastroenterology and motility,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
October 1986, Annals of neurology,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
October 1992, The Journal of clinical endocrinology and metabolism,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
January 1996, Research in veterinary science,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
August 1994, Journal of the autonomic nervous system,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
January 1992, Journal of molecular and cellular cardiology,
G S Smith, and D Savery, and C Marden, and J J López Costa, and S Averill, and J V Priestley, and M Rattray
June 1999, Neuropeptides,
Copied contents to your clipboard!