| D007763 |
Lac Operon |
The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. |
Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose |
|
| D008957 |
Models, Genetic |
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. |
Genetic Models,Genetic Model,Model, Genetic |
|
| D008969 |
Molecular Sequence Data |
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. |
Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular |
|
| D009875 |
Operator Regions, Genetic |
The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. |
Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator |
|
| D011485 |
Protein Binding |
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. |
Plasma Protein Binding Capacity,Binding, Protein |
|
| D011993 |
Recombinant Fusion Proteins |
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. |
Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid |
|
| D012097 |
Repressor Proteins |
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. |
Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional |
|
| D004252 |
DNA Mutational Analysis |
Biochemical identification of mutational changes in a nucleotide sequence. |
Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA |
|
| D004269 |
DNA, Bacterial |
Deoxyribonucleic acid that makes up the genetic material of bacteria. |
Bacterial DNA |
|
| D004794 |
Enzyme Repression |
The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. |
Repression, Enzyme |
|