recO and recR mutations delay induction of the SOS response in Escherichia coli. 1995

S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
Department of Microbiology, University of Texas Health Center, Tyler 75710.

RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage: therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of beta-galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D013014 SOS Response, Genetics An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive. SOS Response (Genetics),SOS Box,SOS Function,SOS Induction,SOS Region,SOS Repair,SOS Response,SOS System,Box, SOS,Function, SOS,Functions, SOS,Genetics SOS Response,Genetics SOS Responses,Induction, SOS,Inductions, SOS,Region, SOS,Regions, SOS,Repair, SOS,Repairs, SOS,Response, Genetics SOS,Response, SOS,Response, SOS (Genetics),Responses, Genetics SOS,Responses, SOS,Responses, SOS (Genetics),SOS Functions,SOS Inductions,SOS Regions,SOS Repairs,SOS Responses,SOS Responses (Genetics),SOS Responses, Genetics,SOS Systems,System, SOS,Systems, SOS

Related Publications

S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
January 1995, Molecular & general genetics : MGG,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
August 1993, Mutation research,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
January 1992, Genetics,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
September 2002, Journal of bacteriology,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
April 1998, Journal of bacteriology,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
October 1997, Genetics,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
January 2002, Environmental and molecular mutagenesis,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
January 1989, Journal of bacteriology,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
June 2000, Journal of bacteriology,
S Hegde, and S J Sandler, and A J Clark, and M V Madiraju
November 1989, Mutation research,
Copied contents to your clipboard!