Regulation of lineage restricted haemopoietic transcription factors in cell hybrids. 1995

A M Murrell, and A R Green
University of Cambridge, Department of Haematology, MRC Centre, UK.

SCL, GATA-1, GATA-2 and GATA-3 encode lineage restricted haemopoietic transcription factors. We have previously shown that SCL, GATA-1 and GATA-2 are expressed in multipotent progenitors prior to lineage commitment, but are down-regulated during granulocyte/monocyte differentiation. The phenomenon of gene extinction in cell hybrids may reveal negative regulatory mechanisms operating during normal differentiation. We have therefore analysed the regulation of SCL, GATA-1, GATA-2 and GATA-3 in cell hybrids formed by the fusion of cell lines representing different haemopoietic lineages. Expression of GATA-3 was extinguished in both human and murine erythroid x T cell hybrids, an observation which suggests that erythroid cells contain factors capable of repressing GATA-3 expression. By contrast expression of SCL, GATA-1 and GATA-2 was not extinguished in erythroid x T or in erythroid x B cell hybrids. These data suggest that T cells and B cells do not contain trans-acting factors capable of down-regulating expression of SCL, GATA-1 or GATA-2, and therefore raise the possibility that a 'hit and run' mechanism may repress these genes during normal haemopoiesis. HpaII sites within the SCL promoter were unmethylated in erythroid cells but methylated in T cells. Erythroid x T and erythroid x B cell hybrids contained both methylated and unmethylated SCL promoters, thus implicating a heritable cis-acting mechanism in the regulation of the SCL gene in lymphoid cell lines. These results provide the first analysis of SCL and GATA gene regulation in stable cell hybrids.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000073942 T-Cell Acute Lymphocytic Leukemia Protein 1 A basic helix-loop-helix transcription factor that plays a critical role in HEMATOPOIESIS and as a positive regulator in the differentiation of ERYTHROID CELLS. Chromosome translocations involving the TAL-1 gene are associated with T-CELL ACUTE LYMPHOCYTIC LEUKEMIA. TAL-1 Protein,TAL1 Transcription Factor,T Cell Acute Lymphocytic Leukemia Protein 1,TAL 1 Protein,Transcription Factor, TAL1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A M Murrell, and A R Green
January 1990, Cellular signalling,
A M Murrell, and A R Green
June 2006, Expert opinion on therapeutic targets,
A M Murrell, and A R Green
January 2014, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
A M Murrell, and A R Green
September 2018, Neuro-oncology,
A M Murrell, and A R Green
April 1991, Seminars in hematology,
A M Murrell, and A R Green
April 2001, Current opinion in immunology,
Copied contents to your clipboard!