Nootropic effect of nicotine on carbon monoxide (CO)-induced delayed amnesia in mice. 1994

M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Meijo University, Nagoya, Japan.

The effects of nicotine on carbon monoxide (CO)-induced amnesia in mice were investigated using a step-down type passive avoidance task. Mice were exposed to CO 3 times at 1-h intervals, 7 days before the first training and retention test and 24 h after the first training session. Memory deficiency occurred in mice when training commenced more than 3 days after CO exposure (delayed amnesia): the median step-down latency in the retention test of the CO-exposed group was significantly shorter than that of the control group. Administration of (-)-nicotine (15.6 and 31.3 nmol/kg, IP) 15 min before the first training session prolonged the step-down latency in the CO-exposed group, but (+)-nicotine did not. To determine whether this effect of (-)-nicotine was mediated via nicotinic cholinergic receptors, we attempted to block its action using a nicotinic acetylcholine receptor antagonist (mecamylamine). Mecamylamine (1.25 mumol/kg) blocked the effect of (-)-nicotine (31.3 nmol/kg) on delayed amnesia. Administration of (-)-nicotine (15.6-62.5 nmol/kg) immediately after the first training session failed to ameliorate learning ability in the CO-exposed group. These results suggest that (-)-nicotine potentiates the nicotinic cholinergic neuronal system and may potentiate acquisition of memory.

UI MeSH Term Description Entries
D008297 Male Males
D008464 Mecamylamine A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool.
D008568 Memory Complex mental function having four distinct phases: (1) memorizing or learning, (2) retention, (3) recall, and (4) recognition. Clinically, it is usually subdivided into immediate, recent, and remote memory.
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002249 Carbon Monoxide Poisoning Toxic asphyxiation due to the displacement of oxygen from oxyhemoglobin by carbon monoxide. Illuminating Gas Poisoning,Poisoning, Carbon Monoxide,Poisoning, Illuminating Gas,Carbon Monoxide Poisonings,Gas Poisoning, Illuminating,Gas Poisonings, Illuminating,Illuminating Gas Poisonings,Monoxide Poisoning, Carbon,Monoxide Poisonings, Carbon,Poisonings, Carbon Monoxide,Poisonings, Illuminating Gas
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D000647 Amnesia Pathologic partial or complete loss of the ability to recall past experiences (AMNESIA, RETROGRADE) or to form new memories (AMNESIA, ANTEROGRADE). This condition may be of organic or psychologic origin. Organic forms of amnesia are usually associated with dysfunction of the DIENCEPHALON or HIPPOCAMPUS. (From Adams et al., Principles of Neurology, 6th ed, pp426-7) Amnesia, Dissociative,Amnesia, Global,Amnesia, Hysterical,Amnesia, Tactile,Amnesia, Temporary,Amnesia-Memory Loss,Amnestic State,Amnesia Memory Loss,Amnesia-Memory Losses,Amnesias,Amnesias, Dissociative,Amnesias, Global,Amnesias, Hysterical,Amnesias, Tactile,Amnesias, Temporary,Amnestic States,Dissociative Amnesia,Dissociative Amnesias,Global Amnesia,Global Amnesias,Hysterical Amnesia,Hysterical Amnesias,State, Amnestic,States, Amnestic,Tactile Amnesia,Tactile Amnesias,Temporary Amnesia,Temporary Amnesias

Related Publications

M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
January 1997, Pharmacology, biochemistry, and behavior,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
January 1991, The Journal of pharmacology and experimental therapeutics,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
November 1996, European journal of pharmacology,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
June 1992, European journal of pharmacology,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
August 1995, European journal of pharmacology,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
January 1988, Psychopharmacology,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
August 2015, Pharmacology, biochemistry, and behavior,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
November 2000, The American journal of psychiatry,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
February 1980, Circulation,
M Hiramatsu, and H Satoh, and T Kameyama, and T Nabeshima
May 1994, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!