The temporal dynamics of brightness filling-in. 1994

K F Arrington
Department of Brain and Cognitive Sciences, Massachusetts 02139.

The temporal dynamics of brightness filling-in were studied through neural network simulation experiments conducted under visual masking stimulus conditions. Grossberg et al. have specified a filling-in model called the Boundary Contour System/Feature Contour System (BCS/FCS). The BCS generates boundary segmentation, while the FCS fills-in surface feature within these segmentation boundaries. Simulation experiments demonstrate that the model accurately predicts that area-suppression follows a U-shaped function of forward masking and demonstrate that the psychophysical findings of Paradiso and Nakayama [(1991) Vision Research, 31, 1221-1236] which they regarded as being against the BCS/FCS model, actually support the model.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D010470 Perceptual Masking The interference of one perceptual stimulus with another causing a decrease or lessening in perceptual effectiveness. Masking, Perceptual,Maskings, Perceptual,Perceptual Maskings
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D005556 Form Perception The sensory discrimination of a pattern, shape, or outline. Contour Perception,Contour Perceptions,Form Perceptions,Perception, Contour,Perception, Form,Perceptions, Contour,Perceptions, Form
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron

Related Publications

K F Arrington
March 1998, Vision research,
K F Arrington
January 1991, Vision research,
K F Arrington
November 2003, Proceedings. Biological sciences,
K F Arrington
December 1966, Vision research,
K F Arrington
March 2004, Neural networks : the official journal of the International Neural Network Society,
K F Arrington
April 1979, Journal of the Optical Society of America,
Copied contents to your clipboard!