Bovine herpesvirus-1 infection reduces bronchial epithelial cell migration to extracellular matrix proteins. 1995

J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
Department of Veterans Affairs Medical Center, Omaha 68105.

Repair of airway epithelium after viral infection involves migration of epithelial cells to cover injured, denuded areas. We determined whether viral infection reduces the capability of bronchial epithelial cells to migrate and to attach to extracellular matrix proteins. Inoculation of bovine bronchial epithelial cells in vitro with bovine herpesvirus-1 reduced their ability to migrate in two different assays of cell migration. When attachment assays were performed, fewer cells attached to both control wells and matrix protein-precoated wells, suggesting that general mechanisms of adherence to substrates were altered by viral infection. Focal contact points of epithelial cells with the underlying matrix were evaluated with epifluorescence microscopy and monoclonal antibodies to vinculin and alpha v, an integrin chain. Disruption of focal contact points was seen early after infection and was prevented by an inhibitor of viral DNA polymerase, phosphonoacetic acid. Cycloheximide did not cause similar disruptions of focal contacts at early time points. Viral infection thus has marked effects on the interactions of bronchial epithelial cells with extracellular matrix and the organization of matrix to cytoskeleton links. The effects appear to be dependent in part on viral replication in the cells and are not simply due to reductions in host cell protein synthesis.

UI MeSH Term Description Entries
D007242 Herpesvirus 1, Bovine A species of VARICELLOVIRUS that causes INFECTIOUS BOVINE RHINOTRACHEITIS and other associated syndromes in CATTLE. IBR-IPV Virus,Infectious Bovine Rhinotracheitis Virus,Infectious Pustular Vulvovaginitis Virus,Bovine Herpesvirus 1,Bovine Rhinotracheitis Virus, Infectious,Herpesvirus 1 (alpha), Bovine,Pustular Vulvovaginitis Virus, Infectious,IBR IPV Virus,IBR-IPV Viruses,Virus, IBR-IPV,Viruses, IBR-IPV
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006566 Herpesviridae Infections Virus diseases caused by the HERPESVIRIDAE. Herpesvirus Infections,B Virus Infection,Infections, Herpesviridae,Infections, Herpesvirus,B Virus Infections,Herpesviridae Infection,Herpesvirus Infection,Infection, B Virus,Infection, Herpesviridae,Infection, Herpesvirus,Infections, B Virus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin

Related Publications

J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
January 1993, American journal of respiratory cell and molecular biology,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
March 1992, Chest,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
April 2005, Alcoholism, clinical and experimental research,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
May 1991, American journal of respiratory cell and molecular biology,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
October 2009, Veterinary immunology and immunopathology,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
December 1996, Nihon Kyobu Shikkan Gakkai zasshi,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
February 2021, Scientific reports,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
July 1993, The Journal of laboratory and clinical medicine,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
January 2001, In vitro cellular & developmental biology. Animal,
J R Spurzem, and M Raz, and H Ito, and C L Kelling, and L C Stine, and D J Romberger, and S I Rennard
October 2017, Scientific reports,
Copied contents to your clipboard!