Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy. 1994

H Mach, and C R Middaugh
Department of Pharmaceutical Research, Merck Research Laboratories, West Point, Pennsylvania 19486.

A method for deconvolution of the near-uv second-derivative spectra of proteins into their component tryptophan, tyrosine, and phenylalanine spectra is described. In this approach, the second-derivative spectra of tryptophan and tyrosine model compounds are numerically shifted to create a set of reference spectra corresponding to anticipated peak positions in protein environments of different polarity. The relative contributions of these individual standard spectra are varied until the best fit to the experimental protein spectrum is obtained. Separate addition of tryptophan and tyrosine standard spectra, weighted by their contributions as determined in the fitting procedure, yields an accurate representation of the spectra of these residues in proteins. The position of the intersection of these spectra with the wavelength axis is used as a measure of spectral position in ethylene glycol perturbation experiments in which the average solvent accessibility is assessed by relating the observed shifts in the tryptophan and tyrosine spectra to the shifts observed for corresponding model compounds. The phenylalanine peak positions in the set of 16 proteins studied are determined as described previously [H. Mach et al. (1991) Arch. Biochem. Biophys. 287, 33-40]. For all three aromatic residues in proteins, no consistent correlation between absolute spectral band positions and average solvent accessibility is observed, suggesting a significant influence of other local (e.g., electrostatic) effects on near-uv spectra of proteins. The maximum spectral shift observed between solvent-exposed model compounds and side chains entirely buried in apolar protein core was found to be approximately 5 nm for tyrosine, 4 nm for tryptophan, and 2 nm for phenylalanine residues.

UI MeSH Term Description Entries
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

H Mach, and C R Middaugh
September 1994, Analytical biochemistry,
H Mach, and C R Middaugh
March 1990, Archives of biochemistry and biophysics,
H Mach, and C R Middaugh
June 2000, Guang pu xue yu guang pu fen xi = Guang pu,
H Mach, and C R Middaugh
January 2002, Journal of biochemical and biophysical methods,
H Mach, and C R Middaugh
February 1993, Journal of pharmaceutical sciences,
H Mach, and C R Middaugh
July 1980, Analytical biochemistry,
Copied contents to your clipboard!