Molecular cloning, cDNA sequence, and localization of a prohormone convertase (PC2) from the Aplysia atrial gland. 1995

G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston 77555.

Neuropeptides and peptide hormones are synthesized as part of larger precursor proteins that are processed post-translationally by subtilisin-related calcium-dependent prohormone convertases (PCs), frequently at multiple basic sites, to generate biologically active peptides. The atrial gland of Aplysia californica produces large quantities of egg-laying hormone (ELH)-related peptides, providing a unique opportunity to study prohormone processing. We have screened an Aplysia atrial gland cDNA library using a Lymnaea stagnalis PC2 probe and have isolated an Aplysia PC2-related 4.6-kb cDNA partial clone that was truncated on the 5' end. The remaining 5' atrial gland PC2 nucleotide sequence was obtained by reverse transcription/polymerase chain reaction (RT-PCR). The composite cDNA structure (5.6 kb) was deduced from sequence analysis of the RT-PCR product combined with the sequence obtained from the cDNA clone. The deduced cDNA of Aplysia atrial gland PC2 encoded a putative preproendoprotease of 653 amino acids that was evolutionarily related to other eukaryotic PC2s, and showed the strongest sequence identity with recently reported Aplysia nervous tissue PC2 sequences. In situ hybridization demonstrated extensive expression of PC2 in atrial gland secretory cells. The cDNA clone contained a relatively long 3'untranslated region (3'-UTR) of 3,632 nucleotides. Strikingly, the 3'-UTR also contained several major nucleotide repeat sequences including the microsatellite repeats, (CA)n and (TG)n, and a TA-rich region comprised largely of the triplet repeat (TTA)n. The characterized Aplysia PC2 is a candidate endoprotease that may play an important role in the processing of ELH-related precursors in the atrial gland and represents the first example of PC2 expression in exocrine tissue.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011498 Protein Precursors Precursors, Protein
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005088 Exocrine Glands Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct. Exocrine Gland,Gland, Exocrine,Glands, Exocrine
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
April 1996, DNA and cell biology,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
March 2002, Biochimica et biophysica acta,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
August 1999, Insect molecular biology,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
September 1993, FEBS letters,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
January 1994, FEBS letters,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
January 1994, The Journal of biological chemistry,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
June 1992, FEBS letters,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
March 1999, The Journal of comparative neurology,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
March 2003, Regulatory peptides,
G T Nagle, and A T Garcia, and S L Knock, and E L Gorham, and W R Van Heumen, and A Kurosky
January 1991, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!