Review: artifical ventilation with positive end-expiratory pressure (PEEP). Historical background, terminology and patho-physiology. 1976

D B Stokke

CPPV (continuous positive pressure ventilation) is obviously superior to IPPV (intermittent positive pressure ventilation) for the treatment of patients with acute respiratory insufficiency (ARI) and results within a few minutes in a considerable increase in the oxygen transport. The principle is to add a positive end-expiratory plateau (PEEP) to IPPV, with a subsequent increase in FRC (functional residual capacity) resulting in re-opening in first and foremost the declive alveolae, which can then once again take part in the gas exchange and possibly re-commence the disrupted surfactant production. In this manner the ventilation/perfusion ratio in the diseases lungs is normalized and the intrapulmonary shunting of venous blood (Qs/Qt) will decrease. At the same time the dead space ventilation fraction (VD/VT) normalizes and the compliance of the lungs (CL) increases. The PEEP value, which results in a maximum oxygen transport, and the lowest dead space fraction, also appears to result in the greatest total static compliance (CT) and the greatest increase in mixed venous oxygen tension (PVO2); this value can be termed "optimal PEEP". The greater the FRC is, with an airway pressure = atmospheric pressure, the lower the PEEP value required in order to obtain maximum oxygen transport. If the optimal PEEP value is exceeded the oxygen transport will fall because of a falling Qt (cardiac output) due to a reduction in venous return. CT and PVO2 will fall and VD/VT will increase. Increasing hyperinflation of the alveolae will result in a rising danger of alveolar rupture. The critical use of CPPV treatment means that the lungs may be safeguarded against high oxygen percents. The mortality of newborn infants with RDS (respiratory distress syndrome) has fallen considerably after the general introduction of CPPV and CPAP (continuous positive airway pressures). The same appears to be the case with adults suffering from ARI (acute respiratory insufficiency).

UI MeSH Term Description Entries
D007384 Intermittent Positive-Pressure Breathing Application of positive pressure to the inspiratory phase of spontaneous respiration. IPPB,Inspiratory Positive-Pressure Breathing,Intermittent Positive Pressure Breathing (IPPB),Breathing, Inspiratory Positive-Pressure,Breathing, Intermittent Positive-Pressure,Inspiratory Positive Pressure Breathing,Intermittent Positive Pressure Breathing,Positive-Pressure Breathing, Inspiratory,Positive-Pressure Breathing, Intermittent
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D009626 Terminology as Topic Works about the terms, expressions, designations, or symbols used in a particular science, discipline, or specialized subject area. Etymology,Nomenclature as Topic,Etymologies
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D012126 Respiratory Dead Space That part of the RESPIRATORY TRACT or the air within the respiratory tract that does not exchange OXYGEN and CARBON DIOXIDE with pulmonary capillary blood. Dead Space, Respiratory,Dead Spaces, Respiratory,Respiratory Dead Spaces,Space, Respiratory Dead,Spaces, Respiratory Dead
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D005652 Functional Residual Capacity The volume of air remaining in the LUNGS at the end of a normal, quiet expiration. It is the sum of the RESIDUAL VOLUME and the EXPIRATORY RESERVE VOLUME. Common abbreviation is FRC. Capacities, Functional Residual,Capacity, Functional Residual,Functional Residual Capacities,Residual Capacities, Functional,Residual Capacity, Functional

Related Publications

D B Stokke
June 1994, Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace,
D B Stokke
May 1978, Nihon rinsho. Japanese journal of clinical medicine,
D B Stokke
October 1992, Der Anaesthesist,
D B Stokke
April 1972, Chest,
D B Stokke
November 1979, La Revue du praticien,
D B Stokke
November 1973, Maryland state medical journal,
Copied contents to your clipboard!