The effect of 1,2,3,4-tetrachlorodibenzo-p-dioxin on drug-metabolizing enzymes in the rat liver. 1994

N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
Division of Environmental Chemistry, National Institute of Health Sciences, Tokyo, Japan.

The effects of 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) on drug-metabolizing enzymes were studied in male and female rats. 1,2,3,4-TCDD (25, 50, 100 and 200 mumol/kg) was administered by i.p. injection once. Among the cytochrome P-450 (P450)-mediated monooxygenase activities tested, 7-ethoxyresorufin O-deethylase (EROD) activities in both male and female rats, which are associated with CYP1A1, were remarkably induced by all doses of 1,2,3,4-TCDD. The relative induction to each control activity were from 3.0- to 24.5-fold and from 2.2- to 16.5-fold, respectively. Also, 1,2,3,4-TCDD increased other CYP1A-mediated monooxygenase activities such as 7-ethoxycoumarin O-deethylase (ECOD) and 7-methoxyresorufin O-demethylase (MROD) in male and female rats dose-dependently (1.4- to 4.3-fold). Western immunoblotting showed that the levels of CYP1A1 and CYP1A2 proteins in liver microsomes were increased by 1,2,3,4-TCDD. Although the activities of other P450-mediated monooxygenases, namely 7-pentoxyresorufin O-depentylase (PROD), 7-benzyloxyresorufin O-debenzylase (BROD), aminopyrine N-demethylase (APND) and nitrosodimethylamine N-demethylase (NDAND) in both male and female rats were induced at high doses (> or = 50 mumol/kg) of 1,2,3,4-TCDD, the relative level was low compared with those of the CYP1A-mediated monooxygenase such as EROD, ECOD or MROD. In addition to P450-mediated monooxygenase, there was significant induction in the activities of the Phase II drug-metabolizing enzymes, UDP-glucuronyltransferase (UGT) activities towards 4-nitrophenol (4-NP) and 7-hydroxycoumarin (7-HC) and glutathione S-transferase (GST) towards 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB) and DT-diaphorase. These results indicate that 1,2,3,4-TCDD induces both Phase I (CYP1A-mediated monooxygenase) and Phase II drug-metabolizing enzymes (UGT, GST, DT-diaphorase) in the male and female rat liver, and that the alterations of drug-metabolizing enzyme are characteristic of PCDD toxicity.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000072317 Polychlorinated Dibenzodioxins Dibenzodioxin derivatives that contain multiple chloride atoms bound to the benzene ring structures. TCDD,Tetrachlorodibenzodioxin,2,3,7,8-Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo-p-dioxins,Dibenzo(b,e)(1,4)dioxin, 2,3,7,8-tetrachloro-,PCDD,Polychlorinated Dibenzo-p-dioxins,Polychlorinated Dibenzodioxin,Polychlorodibenzo-4-dioxin,Polychlorodibenzo-p-dioxin,Tetrachlorodibenzo-p-dioxin,Chlorinated Dibenzo p dioxins,Dibenzo-p-dioxins, Chlorinated,Dibenzo-p-dioxins, Polychlorinated,Dibenzodioxin, Polychlorinated,Dibenzodioxins, Polychlorinated,Polychlorinated Dibenzo p dioxins,Polychlorodibenzo 4 dioxin,Polychlorodibenzo p dioxin,Tetrachlorodibenzo p dioxin

Related Publications

N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
April 1978, Toxicology and applied pharmacology,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
October 2002, Pediatrics international : official journal of the Japan Pediatric Society,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
February 2002, Toxicology,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
July 1977, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
January 1989, The Journal of pharmacology and experimental therapeutics,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
October 2001, Pediatrics international : official journal of the Japan Pediatric Society,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
July 1987, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
January 1971, Acta pharmacologica et toxicologica,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
December 1972, Biochemical pharmacology,
N Hanioka, and H Jinno, and T Toyo'oka, and M Ando
September 1970, Chemical & pharmaceutical bulletin,
Copied contents to your clipboard!