Crystal structure of the replication terminator protein from B. subtilis at 2.6 A. 1995

D E Bussiere, and D Bastia, and S W White
Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710.

The crystal structure of the replication terminator protein (RTP) of B. subtilis has been determined at 2.6 A resolution. As previously suggested by both biochemical and biophysical studies, the molecule exists as a symmetric dimer and is in the alpha + beta protein-folding class. The protein has several uncommon features, including an antiparallel coiled-coil, which serves as the dimerization domain, and both an alpha-helix and a beta-ribbon suitably positioned to interact with the major and minor grooves of B-DNA. A site has been identified on the surface of RTP that is biochemically and positionally suitable for interaction with the replication-specific helicase. Other features of the structure are consistent with the polar contrahelicase mechanism of the protein. A model of the interaction between RTP and its cognate DNA is presented.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

D E Bussiere, and D Bastia, and S W White
September 1999, The EMBO journal,
D E Bussiere, and D Bastia, and S W White
March 2000, The EMBO journal,
D E Bussiere, and D Bastia, and S W White
July 2007, Journal of molecular biology,
D E Bussiere, and D Bastia, and S W White
July 1996, Journal of molecular biology,
D E Bussiere, and D Bastia, and S W White
October 1996, Nature,
D E Bussiere, and D Bastia, and S W White
September 1993, Gene,
D E Bussiere, and D Bastia, and S W White
August 1980, Nature,
D E Bussiere, and D Bastia, and S W White
September 1993, Science in China. Series B, Chemistry, life sciences & earth sciences,
D E Bussiere, and D Bastia, and S W White
July 1979, Journal of molecular biology,
Copied contents to your clipboard!