Seizure development and noradrenaline release in kindling epilepsy after noradrenergic reinnervation of the subcortically deafferented hippocampus by superior cervical ganglion or fetal locus coeruleus grafts. 1994

M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
Department of Neurology, University Hospital, Lund, Sweden.

Solid pieces of fetal locus coeruleus (LC) or superior cervical ganglion (SCG) were placed into a fimbria-fornix lesion cavity in 6-hydroxydopamine-treated, noradrenaline (NA)-denervated rats. Six to 8 months later, all animals were subjected to electrical kindling stimulations in the hippocampus until they had reached the fully kindled state. Nongrafted lesioned animals showed markedly increased kindling rate which was partly attenuated by LC but not SCG grafts. In both LC- and SCG-grafted animals, dopamine beta-hydroxylase immunocytochemistry demonstrated a high density of graft-derived noradrenergic fibers in the dorsal hippocampus, whereas reinnervation of the ventral hippocampus was much more sparse. Subregional distribution of these fibers within the hippocampus was different in the two grafted groups. Both grafts partly restored basal extracellular NA levels in the hippocampus and reacted to generalized seizures by a significant (two- to threefold) increase of NA release, as measured by intracerebral microdialysis. Our data indicate (i) that seizure activity can regulate transmitter release from noradrenergic neurons in both LC and SCG grafts, (ii) that only fetal LC grafts retard seizure development in kindling, and (iii) that the inability of SCG implants to influence kindling epileptogenesis could be due to a lack of synaptic contacts between the graft-derived ganglionic fibers and host hippocampal neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
July 1993, Experimental neurology,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
January 1990, Progress in brain research,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
January 1988, Progress in brain research,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
November 1989, Experimental neurology,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
January 1991, Experimental neurology,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
July 1986, Neuroscience,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
January 1990, Experimental brain research,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
July 1979, Brain research,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
December 1987, Proceedings of the National Academy of Sciences of the United States of America,
M Kokaia, and M A Cenci, and E Elmér, and O G Nilsson, and Z Kokaia, and J Bengzon, and A Björklund, and O Lindvall
May 1983, Brain research,
Copied contents to your clipboard!