Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. 1995

K Madduri, and C R Hutchinson
School of Pharmacy, University of Wisconsin, Madison 53706.

We previously proposed that the adjacent dnrIJ genes represent a two-component regulatory system controlling daunorubicin biosynthesis in Streptomyces peucetius on the basis of the homology of the DnrI and DnrJ proteins to other response regulator proteins and the effect of a dnrI::aphII mutation. In the present paper we report the results of work with the dnrI::aphII mutant in complementation, bioconversion, and transcriptional analysis experiments to understand the function of dnrI. For five putative operons in the sequenced portion of the S. peucetius daunorubicin biosynthesis gene cluster examined, all of the potential transcripts are present in the delta dnrJ mutant and wild-type strains but absent in the dnrI::aphII strain. Since these transcripts code for both early- and late-acting enzymes in daunorubicin biosynthesis, dnrI seems to control all of the daunorubicin biosynthesis genes directly or indirectly. Transcriptional mapping of the 5' and 3' ends of the dnrIJ transcript and the termination site of the convergently transcribed dnrZUV transcript reveals, interestingly, that the two transcripts share extensive complementarity in the regions coding for daunorubicin biosynthesis enzymes. In addition, dnrI may regulate the expression of the drrAB and drrC daunorubicin resistance genes. The delta dnrJ mutant accumulates epsilon-rhodomycinone, the aglycone precursor of daunorubicin. Since this mutant contains transcripts coding for several early- and late-acting enzymes and since dnr mutants blocked in deoxysugar biosynthesis accumulate epsilon-rhodomycinone, we conclude that dnrJ is a daunosamine biosynthesis gene. Moreover, newly available gene sequence data show that the DnrJ protein resembles a group of putative aminotransferase enzymes, suggesting that the role of DnrJ is to add an amino group to an intermediate of daunosamine biosynthesis.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003630 Daunorubicin A very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of LEUKEMIA and other NEOPLASMS. Daunomycin,Rubidomycin,Rubomycin,Cerubidine,Dauno-Rubidomycine,Daunoblastin,Daunoblastine,Daunorubicin Hydrochloride,NSC-82151,Dauno Rubidomycine,Hydrochloride, Daunorubicin,NSC 82151,NSC82151
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000880 Anthraquinones Compounds based on ANTHRACENES which contain two KETONES in any position. Substitutions can be in any position except on the ketone groups. Anthracenedione,Anthracenediones,Anthranoid,Anthraquinone,Anthraquinone Compound,Anthraquinone Derivative,Dianthraquinones,Dianthrones,Anthranoids,Anthraquinone Compounds,Anthraquinone Derivatives,Compound, Anthraquinone,Derivative, Anthraquinone
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

K Madduri, and C R Hutchinson
March 1995, Journal of bacteriology,
K Madduri, and C R Hutchinson
April 1995, Microbiology (Reading, England),
K Madduri, and C R Hutchinson
April 2010, FEMS microbiology letters,
K Madduri, and C R Hutchinson
October 2000, Canadian journal of microbiology,
K Madduri, and C R Hutchinson
March 2014, International journal of biological macromolecules,
Copied contents to your clipboard!