Na+ channel mis-expression accelerates K+ channel development in embryonic Xenopus laevis skeletal muscle. 1994

P Linsdell, and W J Moody
Department of Zoology, University of Washington, Seattle 98195.

1. The normal developmental pattern of voltage-gated ion channel expression in embryonic skeletal muscle cells of the frog Xenopus laevis was disrupted by introduction of cloned rat brain Na+ channels. 2. Following injection of channel mRNA into fertilized eggs, large Na+ currents were observed in muscle cells at the earliest developmental stage at which they could be uniquely identified. Muscle cells normally have no voltage-gated currents at this stage. 3. Muscle cells expressing exogenous Na+ channels showed increased expression of at least two classes of endogenous K+ currents. 4. This increase in K+ current expression was inhibited by the Na+ channel blocker tetrodotoxin, suggesting that increased electrical activity caused by Na+ channel mis-expression triggers a compensatory increase in K+ channel expression. 5. Block of endogenous Na+ channels in later control myocytes retards K+ current development, indicating that a similar compensatory mechanism to that triggered by Na+ channel mis-expression operates to balance Na+ and K+ current densities during normal muscle development.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

P Linsdell, and W J Moody
November 2010, Anatomical record (Hoboken, N.J. : 2007),
P Linsdell, and W J Moody
May 1991, Developmental biology,
P Linsdell, and W J Moody
March 1999, The International journal of developmental biology,
P Linsdell, and W J Moody
April 1990, The American journal of anatomy,
P Linsdell, and W J Moody
January 1991, Methods in cell biology,
P Linsdell, and W J Moody
January 2004, Gene expression patterns : GEP,
P Linsdell, and W J Moody
December 1991, Proceedings of the National Academy of Sciences of the United States of America,
P Linsdell, and W J Moody
October 1992, Journal of morphology,
P Linsdell, and W J Moody
May 1990, Oncogene,
Copied contents to your clipboard!