Effect of swimming exercise and ethanol on rat liver P450-dependent monooxygenases. 1994

C M Ardies, and E K Zachman, and B J Koehn
Center for Exercise Science, Northeastern Illinois University, Chicago 60625-4699.

The interactive effects of 6 wk of repeated swimming exercise and chronic ethanol consumption (36% of total calories) on the hepatic cytochrome P450-dependent monooxygenase system were studied utilizing four groups of male rats in a 2 x 2 factorial design. The sedentary-control (S/C), sedentary-ethanol (S/E), and swim-control (SW/C) groups received the same amount of food that the swim-ethanol (SW/E) group consumed. The swimming groups were trained to swim for 2 h.d-1, 5 d.wk-1. Significant main effects due to ethanol (P < 0.002) and exercise (P < 0.02) were observed for the enhanced cytochrome P450 content and cytochrome P450 reductase activity, respectively. In addition, significant main effects for ethanol (P < 0.001), exercise (P < 0.0001), and significant interaction effects (P < 0.005) on aniline p-hydroxylase activity and significant main effects for ethanol (P < 0.01), exercise (P < 0.01), and interaction effects (P < 0.04) on 7-ethoxycoumarin o-deethylase activity were observed. Because the SW/C treatment had no effect on any of the measured cytochrome P450 activities and the SW/E treatment enhanced P450 activities much more than the S/E treatment, the main effects observed for exercise are accounted for by the alterations produced by combining swimming with the ethanol treatment. Based on these results, repeated exercise combined with ethanol consumption produces a synergistic increase in ethanol-inducible cytochrome P450-dependent activities.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D009251 NADPH-Ferrihemoprotein Reductase A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4. Cytochrome P-450 Reductase,Ferrihemoprotein P-450 Reductase,NADPH Cytochrome P-450 Oxidoreductase,NADPH Cytochrome P-450 Reductase,NADPH Cytochrome c Reductase,Cytochrome P-450 Oxidase,Cytochrome P450 Reductase,Ferrihemoprotein P450 Reductase,NADPH Cytochrome P450 Oxidoreductase,NADPH Cytochrome P450 Reductase,NADPH-Cytochrome P450 Reductase,NADPH-P450 Reductase,Cytochrome P 450 Oxidase,Cytochrome P 450 Reductase,Ferrihemoprotein P 450 Reductase,NADPH Cytochrome P 450 Oxidoreductase,NADPH Cytochrome P 450 Reductase,NADPH Ferrihemoprotein Reductase,NADPH P450 Reductase,Oxidase, Cytochrome P-450,P-450 Oxidase, Cytochrome,P450 Reductase, Cytochrome,P450 Reductase, NADPH-Cytochrome,Reductase, Cytochrome P-450,Reductase, Cytochrome P450,Reductase, Ferrihemoprotein P-450,Reductase, Ferrihemoprotein P450,Reductase, NADPH-Cytochrome P450,Reductase, NADPH-Ferrihemoprotein,Reductase, NADPH-P450
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000815 Aniline Hydroxylase A drug-metabolizing, cytochrome P-450 enzyme which catalyzes the hydroxylation of aniline to hydroxyaniline in the presence of reduced flavoprotein and molecular oxygen. EC 1.14.14.-. Hydroxylase, Aniline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C M Ardies, and E K Zachman, and B J Koehn
January 1996, Chemical research in toxicology,
C M Ardies, and E K Zachman, and B J Koehn
March 1993, Biochemical pharmacology,
C M Ardies, and E K Zachman, and B J Koehn
January 2000, Archives of toxicology,
C M Ardies, and E K Zachman, and B J Koehn
February 1995, Xenobiotica; the fate of foreign compounds in biological systems,
C M Ardies, and E K Zachman, and B J Koehn
November 1996, Toxicology,
C M Ardies, and E K Zachman, and B J Koehn
January 1998, Life sciences,
C M Ardies, and E K Zachman, and B J Koehn
August 2005, Drug metabolism and disposition: the biological fate of chemicals,
C M Ardies, and E K Zachman, and B J Koehn
January 2003, Acta physiologica et pharmacologica Bulgarica,
Copied contents to your clipboard!