Flattening of the contrast-detail curve for large lesions on liver CT images. 1994

S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115.

This study evaluated the relative roles of physical and perceptual factors in flattening the contrast-detail (CD) curve on liver CT scans. To estimate the role of physical factors, the theoretical CD curve for a calculated theoretical observer (i.e., a nonprewhitening matched filter) was predicted using the measured noise power spectrum and measured modulation transfer function of the CT system. Another theoretical CD curve was also produced from the output of the same calculated observer after taking the human visual response function (VRF) into account. Perceptual factors were evaluated by analyzing human observers' replicated ratings of the visibility of details super-imposed on liver CT scans. The CD curve for the calculated theoretical observer was below the CD curve actually measured for nine human observers and showed no flattening. With the VRF included, flattening of the theoretical CD curves was only produced by fixed image viewing distances of less than 30 cm, a reading style not employed by the human observers. Correlated ROC analysis of observers' replicated ratings indicated that while random, intraobserver variation was present, the magnitude of this so-called observer noise was insufficient to explain the flattening of CD curves. Use of narrow display windows did not eliminate this flattening effect. The main reason for human observers' inefficient detection of large, low contrast liver lesions appears to be a consistent misuse of the image information.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011877 Radionuclide Imaging The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph. Gamma Camera Imaging,Radioisotope Scanning,Scanning, Radioisotope,Scintigraphy,Scintiphotography,Imaging, Gamma Camera,Imaging, Radionuclide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015588 Observer Variation The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material). Bias, Observer,Interobserver Variation,Intraobserver Variation,Observer Bias,Inter-Observer Variability,Inter-Observer Variation,Interobserver Variability,Intra-Observer Variability,Intra-Observer Variation,Intraobserver Variability,Inter Observer Variability,Inter Observer Variation,Inter-Observer Variabilities,Inter-Observer Variations,Interobserver Variabilities,Interobserver Variations,Intra Observer Variability,Intra Observer Variation,Intra-Observer Variabilities,Intra-Observer Variations,Intraobserver Variabilities,Intraobserver Variations,Observer Variations,Variabilities, Inter-Observer,Variabilities, Interobserver,Variabilities, Intra-Observer,Variabilities, Intraobserver,Variability, Inter-Observer,Variability, Interobserver,Variability, Intra-Observer,Variability, Intraobserver,Variation, Inter-Observer,Variation, Interobserver,Variation, Intra-Observer,Variation, Intraobserver,Variation, Observer,Variations, Inter-Observer,Variations, Interobserver,Variations, Intra-Observer,Variations, Intraobserver,Variations, Observer

Related Publications

S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
September 2022, Journal of applied clinical medical physics,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
July 1982, AJR. American journal of roentgenology,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
January 1967, Journal of electron microscopy,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
January 1990, Medical physics,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
January 2015, Medical image analysis,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
June 2020, The Veterinary record,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
January 1982, AJR. American journal of roentgenology,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
May 2024, BMC medical imaging,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
January 2015, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
S E Seltzer, and P F Judy, and R G Swensson, and K H Chan, and R D Nawfel
January 2024, Structural heart : the journal of the Heart Team,
Copied contents to your clipboard!