Effect of ageing on ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles tendons. 1994

Y Nakagawa, and T Majima, and K Nagashima
Department of Pathology, Hokkaido University School of Medicine, Sapporo, Japan.

This reports presents the changing morphological characteristics of collagen and fibroblasts in the soleus and gastrocnemius muscle tendon of female Japanese white rabbits with ageing. The fibroblasts decreased in number per 37 microns 2 with ageing in each group, and their morphology became longer and more slender through ageing. The mean fibril area and diameter of the collagen fibrils of soleus muscle tendon (SMT) and lateral gastrocnemius muscle tendon (GMT) in 8- to 10-month old rabbits were significantly higher than those of 3-wk-old rabbits during growth (P < 0.01). The mean area and diameter of collagen fibrils of SMT and GMT decreased during senescence: the values for 4- to 5-yr-old rabbits were lower than those for 8- to 10-month-old rabbits, but the difference was not significant. Statistically significant differences in fibril area and diameter between the SMT and GMT were not found during ageing. The number of thick fibrils increased during growth, but decreased in senescence. There were more thin fibrils (30-60 nm) in the 3-wk-old rabbits than in the 8- to 10-month old and 4 to 5-yr-old groups, and the large-diameter collagen (300-360 nm) was more abundant in the 8- to 10-month-old group than in the 3-wk-old and 4- to 5-yr-old groups. Differences in fibril size between slow and fast muscle tendons were not observed during ageing.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005260 Female Females
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000125 Achilles Tendon Tendon that connects the muscles in the back of the calf to the HEEL BONE. Calcaneal Tendon,Tendo Calcaneus,Calcaneal Tendons,Tendon, Achilles,Tendon, Calcaneal,Tendons, Calcaneal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018656 Muscle Fibers, Fast-Twitch Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified. Muscle Fibers, Intermediate,Muscle Fibers, Type II,Muscle Fibers, White,Fast-Twitch Muscle Fiber,Fast-Twitch Muscle Fibers,Fiber, Fast-Twitch Muscle,Fiber, Intermediate Muscle,Fiber, White Muscle,Fibers, Fast-Twitch Muscle,Fibers, Intermediate Muscle,Fibers, White Muscle,Intermediate Muscle Fiber,Intermediate Muscle Fibers,Muscle Fiber, Fast-Twitch,Muscle Fiber, Intermediate,Muscle Fiber, White,Muscle Fibers, Fast Twitch,White Muscle Fiber,White Muscle Fibers

Related Publications

Y Nakagawa, and T Majima, and K Nagashima
June 1988, Biophysical journal,
Y Nakagawa, and T Majima, and K Nagashima
August 1976, FEBS letters,
Y Nakagawa, and T Majima, and K Nagashima
August 1968, Archives internationales de pharmacodynamie et de therapie,
Y Nakagawa, and T Majima, and K Nagashima
September 1982, The American journal of physiology,
Y Nakagawa, and T Majima, and K Nagashima
February 2003, Acta orthopaedica Scandinavica. Supplementum,
Y Nakagawa, and T Majima, and K Nagashima
September 2009, Acta physiologica (Oxford, England),
Y Nakagawa, and T Majima, and K Nagashima
January 1965, The Scientific basis of medicine annual reviews,
Y Nakagawa, and T Majima, and K Nagashima
September 2007, Archives of physical medicine and rehabilitation,
Y Nakagawa, and T Majima, and K Nagashima
April 1982, The Biochemical journal,
Y Nakagawa, and T Majima, and K Nagashima
September 1981, Journal of muscle research and cell motility,
Copied contents to your clipboard!