Effect of IFN-gamma on the proliferation of Toxoplasma gondii in monocytes and monocyte-derived macrophages from AIDS patients. 1994

F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
Department of Infectious Diseases, University Hospital, Leiden, The Netherlands.

This study was undertaken to determine whether the activity of monocytes and monocyte-derived macrophages (MDM) from acquired immune deficiency syndrome (AIDS) patients against Toxoplasma gondii is altered and whether this activity can be modulated by recombinant interferon-gamma (rIFN-gamma). Untreated and rIFN-gamma-treated monocytes or MDM from AIDS patients and from healthy controls were infected with T. gondii and the proliferation of these protozoa was determined. The H2O2 release by monocytes from AIDS patients and healthy controls was measured upon stimulation with phorbol myristate acetate (PMA) and formyl methionyl leucyl phenylalanine (FMLP). Monocytes from AIDS patients exhibited significantly lower toxoplasmastic activity compared to monocytes from healthy controls. The H2O2 release by monocytes from AIDS patients was also diminished. Incubation of monocytes from AIDS patients with rIFN-gamma for 2 days, but not 1 day, restored their toxoplasmastatic activity. The rate of proliferation of T. gondii was higher in MDM from AIDS patients than in MDM from healthy controls. Treatment of MDM from AIDS patients with rIFN-gamma for 1, 2 or 3 days resulted in partial inhibition of the proliferation of T. gondii. Collectively, these results demonstrate that the reduced toxoplasmastatic activity of monocytes and MDM from AIDS patients can be enhanced by in vitro treatment with rIFN-gamma, which supports the clinical use of rIFN-gamma for the treatment of opportunistic infections in these patients.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000163 Acquired Immunodeficiency Syndrome An acquired defect of cellular immunity associated with infection by the human immunodeficiency virus (HIV), a CD4-positive T-lymphocyte count under 200 cells/microliter or less than 14% of total lymphocytes, and increased susceptibility to opportunistic infections and malignant neoplasms. Clinical manifestations also include emaciation (wasting) and dementia. These elements reflect criteria for AIDS as defined by the CDC in 1993. AIDS,Immunodeficiency Syndrome, Acquired,Immunologic Deficiency Syndrome, Acquired,Acquired Immune Deficiency Syndrome,Acquired Immuno-Deficiency Syndrome,Acquired Immuno Deficiency Syndrome,Acquired Immuno-Deficiency Syndromes,Acquired Immunodeficiency Syndromes,Immuno-Deficiency Syndrome, Acquired,Immuno-Deficiency Syndromes, Acquired,Immunodeficiency Syndromes, Acquired,Syndrome, Acquired Immuno-Deficiency,Syndrome, Acquired Immunodeficiency,Syndromes, Acquired Immuno-Deficiency,Syndromes, Acquired Immunodeficiency
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014122 Toxoplasma A genus of protozoa parasitic to birds and mammals. T. gondii is one of the most common infectious pathogenic animal parasites of man. Toxoplasma gondii,Toxoplasma gondius,Toxoplasmas,gondius, Toxoplasma

Related Publications

F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
September 1980, Cellular immunology,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
October 1989, Infection and immunity,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
December 1977, Infection and immunity,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
May 1987, European journal of immunology,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
May 1983, The Journal of infectious diseases,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
October 2003, Investigative ophthalmology & visual science,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
June 1984, Blood,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
April 2009, Investigative ophthalmology & visual science,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
January 2022, Frontiers in immunology,
F G Delemarre, and A Stevenhagen, and F P Kroon, and M Y van Eer, and P L Meenhorst, and R van Furth
May 1974, The Journal of experimental medicine,
Copied contents to your clipboard!