Genomic structure and expression of the ADH7 gene encoding human class IV alcohol dehydrogenase, the form most efficient for retinol metabolism in vitro. 1995

M Zgombić-Knight, and M H Foglio, and G Duester
Cancer Research Center, La Jolla Cancer Research Foundation, California 92037.

Human alcohol dehydrogenase (ADH) consists of a family of five evolutionarily related classes of enzymes that collectively function in the metabolism of a wide variety of alcohols including ethanol and retinol. Class IV ADH has been found to be the most active as a retinol dehydrogenase, thus it may participate in retinoic acid synthesis. The gene encoding class IV ADH (ADH7) has now been cloned and subjected to molecular examination. Southern blot analysis indicated that class IV ADH is encoded by a single unique gene and has no related pseudogenes. The class IV ADH gene is divided into nine exons, consistent with the highly conserved intron/exon structure of other mammalian ADH genes. The predicted amino acid sequence of the exon coding regions indicates that a protein of 373 amino acids, excluding the amino-terminal methionine, would be translated, sharing greater sequence identity with class I ADH (69%) than with classes II, III or V (59-61%). Expression of class IV ADH mRNA was detected in human stomach but not liver. This correlates with previous protein studies, which have indicated that class IV ADH is the major stomach ADH but unlike other ADHs is absent from liver. Primer extension studies using human stomach RNA were performed to identify the transcription initiation site lying 100 base pairs upstream of the ATG translation start codon. Nucleotide sequence analysis of the promoter region indicated the absence of a TATA box sequence often located about 25 base pairs upstream of the start site as well as the absence of GC boxes, which are quite often seen in promoters lacking a TATA box. The class IV ADH promoter thus differs from the other ADH promoters, which contain either a TATA box (classes I and II) or GC-boxes (class III), suggesting a fundamentally different form of transcriptional regulation.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

M Zgombić-Knight, and M H Foglio, and G Duester
June 1994, The Journal of biological chemistry,
M Zgombić-Knight, and M H Foglio, and G Duester
September 1994, FEBS letters,
M Zgombić-Knight, and M H Foglio, and G Duester
July 2002, The Journal of biological chemistry,
M Zgombić-Knight, and M H Foglio, and G Duester
January 1996, Genomics,
M Zgombić-Knight, and M H Foglio, and G Duester
January 2008, Human molecular genetics,
M Zgombić-Knight, and M H Foglio, and G Duester
January 1993, Advances in experimental medicine and biology,
M Zgombić-Knight, and M H Foglio, and G Duester
January 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Zgombić-Knight, and M H Foglio, and G Duester
August 1998, Biochemical and biophysical research communications,
M Zgombić-Knight, and M H Foglio, and G Duester
January 1996, Alcohol (Fayetteville, N.Y.),
Copied contents to your clipboard!