Characteristics of NIFNE in Azotobacter vinelandii strains. Implications for the synthesis of the iron-molybdenum cofactor of dinitrogenase. 1995

J T Roll, and V K Shah, and D R Dean, and G P Roberts
Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706.

The products of the nifN and nifE genes of Azotobacter vinelandii function as a 200-kDa alpha 2 beta 2 tetramer (NIFNE) in the synthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase, the enzyme system required for biological nitrogen fixation. NIFNE was purified using a modification of the published protocol. Immunoblot analysis of anoxic native gels indicated that distinct forms of NIFNE accumulate in strains deficient in either NIFB (delta nifB::kan delta nifDK) or NIFH (delta nifHDK). During the purification of NIFNE from the delta nifHDK mutant, its mobility in these gels changed, becoming similar to that of NIFNE from the delta nifB::kan delta nifDK mutant. While NIFB activity initially co-purified with the NIFNE activity from the delta nifHDK mutant, further purification of NIFNE activity resulted in the loss of the co-purifying NIFB activity; this loss correlated with the change in NIFNE mobility on native gels. These results suggest that the form of NIFNE accumulated in the delta nifHDK mutant is associated with NIFB activity in crude extract but loses this association during NIFNE purification. Addition of the purified metabolic product of NIFB, termed NifB-co, to either NIFNE purified from the delta nifHDK strain or to the NIFNE in crude extract of the delta nifB::kan delta nifDK strain caused a change in the mobility of NIFNE on anoxic native gels to that of the form accumulated in a delta nifHDK mutant. These results support a model where both NifB-co and dinitrogenase reductase participate in FeMo-co synthesis through NIFNE, which serves as a scaffold for this process.

UI MeSH Term Description Entries
D008983 Molybdoferredoxin A non-heme iron-sulfur protein isolated from Clostridium pasteurianum and other bacteria. It is a component of NITROGENASE, which is active in nitrogen fixation, and consists of two subunits with molecular weights of 59.5 kDa and 50.7 kDa, respectively. Molybdenum-Iron Protein,FeMo Cofactor,Iron-Molybdenum Cofactor,MoFe Protein,Iron Molybdenum Cofactor,Molybdenum Iron Protein
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D016948 Azotobacter vinelandii A species of gram-negative, aerobic bacteria first isolated from soil in Vineland, New Jersey. Ammonium and nitrate are used as nitrogen sources by this bacterium. It is distinguished from other members of its genus by the ability to use rhamnose as a carbon source. (From Bergey's Manual of Determinative Bacteriology, 9th ed) Azotobacter miscellum

Related Publications

J T Roll, and V K Shah, and D R Dean, and G P Roberts
April 1987, Journal of bacteriology,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
October 2002, The Journal of biological chemistry,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
January 2002, Metal ions in biological systems,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
October 1987, The Journal of biological chemistry,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
September 1986, Biochemical and biophysical research communications,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
October 1993, The Journal of biological chemistry,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
November 1995, The Journal of biological chemistry,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
August 1958, Experimental cell research,
J T Roll, and V K Shah, and D R Dean, and G P Roberts
May 2001, The Journal of biological chemistry,
Copied contents to your clipboard!