Expression of hepatic calcium-binding protein regucalcin mRNA is decreased by phenobarbital administration in rats. 1994

M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
Laboratory of Metabolism and Endocrinology, Graduate School of Nutritional Sciences, University of Shizuoka, Japan.

The effect of phenobarbital on the expression of calcium-binding protein regucalcin mRNA in rat liver was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb of open reading frame). Phenobarbital (4, 8 and 12 mg/ 100 g body weight) was intraperitoneally administered to rats 3 times with 24 h intervals, and the animals were sacrificed by bleeding at 24 h after the last administration. The hepatic regucalcin mRNA levels were markedly reduced by phenobarbital administration. This decrease was about 50% of control level with the 12 mg/100 g dose. Moreover, the hepatic regucalcin concentration was significantly decreased by the administration of phenobarbital (12 mg/100 g), although the serum regucalcin concentration was not altered appreciably. Meanwhile, serum transaminases (GOT and GPT) activities were not increased by the administration of phenobarbital (4 and 12 mg/100 g). The present study demonstrates that the expression of hepatic regucalcin mRNA is decreased by phenobarbital administration in rats, suggesting that regucalcin does not have a role in drug metabolism related to phenobarbital.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
January 1998, Molecular and cellular biochemistry,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
May 1995, Molecular and cellular biochemistry,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
February 1995, Molecular and cellular biochemistry,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
March 1997, Molecular and cellular biochemistry,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
June 1992, FEBS letters,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
January 1993, FEBS letters,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
September 1996, Molecular and cellular biochemistry,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
February 1996, Molecular and cellular biochemistry,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
April 1998, Biological & pharmaceutical bulletin,
M Isogai, and K Oishi, and N Shimokawa, and M Yamaguchi
February 1995, Molecular and cellular biochemistry,
Copied contents to your clipboard!