Characterization of the proximal promoter of the human histone H2A.Z gene. 1995

C L Hatch, and W M Bonner
Laboratory of Molecular Pharmacology, DTP, DCT, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.

Histone H2A.Z is a distinct and evolutionarily conserved member of the histone H2A family whose synthesis, in contrast to that of most other histone species, is not dependent on DNA replication. The gene for H2A.Z lacks the signals involved in the 3' processing of replication-linked histone mRNA species and contains introns as well as polyadenylation signals. The H2A.Z gene proximal promoter, a 200-bp region upstream of the transcription start site that provides maximal activity in CAT reporter studies, contains three CCAAT and two GGGCGG elements as well as a consensus TATA element. In vitro DNase I footprint analysis of this region indicated that the central CCAAT and the distal GGGCGG elements were protected by factors present in HeLa nuclear extract. Site-directed mutations of selected promoter elements were generated in the H2A.Z gene promoter region of a CAT reporter construct by a novel one-step PCR procedure. Of the elements examined, the central CCAAT element was found to be the most important determinant of promoter activity; its disruption decreased CAT reporter activity by 65%. Disruption of the proximal CCAAT or the distal GGGCGG elements led to decreases in activity of 40%, while disruption of any of the other examined led to smaller decreases. Gel-mobility shift analysis showed that the three CCAAT elements had overlapping but not identical binding specificities for nuclear factors. The two GGGCGG elements both were found to bind transcription factor Sp1, but the distal element bound Sp1 with higher affinity. The findings show that the central and proximal CCAAT elements and the distal GGGCGG element appear to be the major determinants of the transcriptional activity of the H2A.Z gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

C L Hatch, and W M Bonner
July 1995, Journal of cellular biochemistry,
C L Hatch, and W M Bonner
December 2009, BMC biology,
C L Hatch, and W M Bonner
June 2019, Epigenetics & chromatin,
C L Hatch, and W M Bonner
June 2012, Investigative ophthalmology & visual science,
C L Hatch, and W M Bonner
November 2006, Medecine sciences : M/S,
C L Hatch, and W M Bonner
October 2013, Epigenetics & chromatin,
C L Hatch, and W M Bonner
February 2009, Biochemistry and cell biology = Biochimie et biologie cellulaire,
C L Hatch, and W M Bonner
April 1999, Biochemistry and molecular biology international,
Copied contents to your clipboard!