flbD encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. 1995

J Wieser, and T H Adams
Department of Biology, Texas A&M University, College Station 77843.

The timing of asexual fruiting body formation during Aspergillus nidulans colony development is precisely regulated so that conidiophores are typically produced 1-2 mm behind the growing edge of the colony. Mutations in any of four A. nidulans genes, flbB, flbC, flbD, or flbE, result in colonies that are delayed at least 24 hr in their ability to initiate conidiophore development resulting in fluffy colonies with conidiophores forming in the center, at least 12-15 mm behind the growing edge. The requirement for each of these four genes in determining the timing of developmental initiation precedes transcriptional activation of the primary developmental regulatory gene brlA, indicating a possible role for each gene in developmentally regulated activation of brlA expression. The wild-type flbD gene was isolated and shown to encode an approximately 1.6-kb mRNA that is present throughout the A. nidulans life cycle. The deduced FlbD protein sequence predicts a 314-amino-acid polypeptide with significant identity at its amino terminus to the DNA-binding domain of the Myb family of transcription factors indicating that FlbD probably functions as a sequence-specific transcriptional activator. Although conidiophore development does not normally occur in submerged culture, forced overexpression of flbD in submerged hyphae caused inappropriate activation of brlA expression and resulted in production of complex conidiophores that produced all of the distinct cell types observed in wild-type conidiophores including viable spores. This ability of flbD overexpression to activate conidiation requires brlA, flbB, and flbA (another early developmental regulator) but does not require flbC or flbE. We propose that FlbD functions during normal development by activating transcription of other genes required for development (such as brlA) and that FlbD activity is normally controlled post-transcriptionally by an unknown mechanism.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012100 Reproduction, Asexual Reproduction without fusion of two types of cells, mostly found in ALGAE; FUNGI; and PLANTS. Asexual reproduction occurs in several ways, such as budding, fission, or splitting from "parent" cells. Only few groups of ANIMALS reproduce asexually or unisexually (PARTHENOGENESIS). Asexual Reproduction,Asexual Reproductions,Reproductions, Asexual
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D001233 Aspergillus nidulans A species of imperfect fungi from which the antibiotic nidulin is obtained. Its teleomorph is Emericella nidulans. Aspergillus nidulellus,Emericella nidulans

Related Publications

J Wieser, and T H Adams
November 1972, Journal of general microbiology,
J Wieser, and T H Adams
October 2005, Fungal genetics and biology : FG & B,
J Wieser, and T H Adams
September 1990, Journal of general microbiology,
J Wieser, and T H Adams
January 2014, Research in microbiology,
J Wieser, and T H Adams
March 1976, Biochemical and biophysical research communications,
Copied contents to your clipboard!