Effect of type A and B monoamine oxidase selective inhibition by Ro 41-1049 and Ro 19-6327 on dopamine outflow in rat kidney slices. 1994

M Pestana, and P Soares-da-Silva
Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal.

1. The influence of pargyline and of selective inhibitors of type A and B monoamine oxidase (MAO), Ro 41-1049 and Ro 19-6327 respectively, on the outflow of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) in slices of rat renal cortex loaded with exogenous L-3,4-dihydroxyphenylalanine (L-DOPA) was examined. Dopamine and DOPAC in the tissues and in the effluent were assayed by means of h.p.l.c. with electrochemical detection. 2. The levels of newly-formed dopamine and DOPAC in the perifusate decreased progressively with time. In control conditions, DOPAC/dopamine ratios in the perifusate were 3 to 5 fold those in the tissue and were found to increase progressively with time. The addition of pargyline (100 microM), produced a marked decrease in the outflow levels of DOPAC (45 to 54% reduction) and significantly increased the levels of dopamine in the effluent (102 to 158% increase); DOPAC/dopamine ratios in the perifusate remained stable throughout the perifusion and were similar to those found in the tissues. The addition of the MAO-A inhibitor Ro 41-1049 to the perifusion fluid also significantly decreased DOPAC outflow (41% to 54% reduction) and increased dopamine outflow (19% to 80% increase). In the presence of Ro 41-1049 DOPAC/dopamine ratios in the perifusate were lower (P < 0.01) than in controls; in contrast with the effect of pargyline, this ratio was found to increase (P < 0.01) throughout the perifusion period. Ro 19-6327 did not reduce the outflow of DOPAC, but significantly increased (by 40-60%) that of dopamine. In the presence of Ro 19-6237, the proportion of DOPAC to dopamine in the perifusate was similar to that of controls and significantly increased throughout the perifusion; however, this increase was less than that observed in the control group.3. When benserazide (50 microM) was added to the perifusion fluid, the levels of both dopamine and DOPAC in the effluent were similar to those observed in the absence of benserazide. However, in the presence of benserazide, DOPAC/dopamine ratios in the perifusate did not increase with time. In conditions of decarboxylase inhibition, the effects of pargyline, Ro 41-1049 and Ro 19-6327 on dopamine and DOPAC outflow were less pronounced than in experiments conducted in the absence of benserazide.4. In conclusion, the results presented here show that the fraction of newly-formed dopamine which leaves the compartment where the synthesis has occurred is a constant source for deamination into DOPAC. The results provide evidence favouring the view that MAO-A is the main form of the enzyme involved in this process; however, the data described here suggest that dopamine would also have access to MAO-B.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008297 Male Males
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D008996 Monoamine Oxidase Inhibitors A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase
D010293 Pargyline A monoamine oxidase inhibitor with antihypertensive properties. Pargyline Hydrochloride,Hydrochloride, Pargyline
D010848 Picolinic Acids Compounds with general formula C5H4N(CO2H) derived from PYRIDINE, having a carboxylic acid substituent at the 2-position. Acids, Picolinic
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Pestana, and P Soares-da-Silva
January 1994, Journal of neural transmission. Supplementum,
M Pestana, and P Soares-da-Silva
December 1990, The Journal of pharmacology and experimental therapeutics,
M Pestana, and P Soares-da-Silva
January 1990, Journal of neural transmission. Supplementum,
M Pestana, and P Soares-da-Silva
March 1989, European journal of pharmacology,
M Pestana, and P Soares-da-Silva
May 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Pestana, and P Soares-da-Silva
January 1987, Alcohol and alcoholism (Oxford, Oxfordshire),
M Pestana, and P Soares-da-Silva
January 1994, Journal of neural transmission. Parkinson's disease and dementia section,
M Pestana, and P Soares-da-Silva
March 1990, Molecular pharmacology,
Copied contents to your clipboard!