Endogenous gamma interferon, tumor necrosis factor, and interleukin-6 in Staphylococcus aureus infection in mice. 1995

A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
Department of Bacteriology, Hirosaki University School of Medicine, Japan.

The production and roles of endogenous gamma interferon (IFN-gamma), tumor necrosis factor (TNF), and interleukin-6 (IL-6) in both lethal and nonlethal infections of Staphylococcus aureus were investigated in mice. In the case of nonlethal infection, although no bacteria were detected in the bloodstreams, bacteria that colonized and proliferated persistently for 3 weeks were found in the kidneys. All mice given lethal injections died within 7 days, and large numbers of bacteria were detected in the bloodstreams, spleens, and kidneys. The first peaks of IFN-gamma, TNF, and IL-6 were observed in the bloodstreams and spleens of the mice with nonlethal and lethal infections within 24 h. Thereafter, in the nonlethal cases, IFN-gamma, TNF, and IL-6 peaked again in the spleens and kidneys during the period of maximum growth of bacteria in the kidneys, although only IL-6 was detected in the sera. In contrast, in the case of lethal infection, the titers of IFN-gamma and IL-6 in the sera and TNF in the kidneys peaked before death. Effects of in vivo administration of monoclonal antibodies (MAbs) against IFN-gamma and TNF on the fates of S. aureus-infected mice were studied. In the nonlethal infections, anti-TNF alpha (anti-TNF-alpha) MAb-treated mice, but not anti-IFN-gamma MAb-treated mice, died as a result of worsening infection, suggesting that endogenous TNF plays a protective role in host resistance to S. aureus infection. In the mice that received lethal doses, injection of anti-TNF-alpha MAb accelerated death. However, although injection of anti-IFN-gamma MAb inhibited host resistance of the infected mice early in infection, most of the animals survived the lethal infection by injection of anti-IFN-gamma MAb, suggesting that endogenous IFN-gamma plays a detrimental role in S. aureus infection. Thus, this study demonstrated that IFN-gamma and TNF play different roles in S. aureus infection.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D013203 Staphylococcal Infections Infections with bacteria of the genus STAPHYLOCOCCUS. Infections, Staphylococcal,Staphylococcus aureus Infection,Staphylococcal Infection,Staphylococcus aureus Infections
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon

Related Publications

A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
February 1992, Infection and immunity,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
November 2003, Immunopharmacology and immunotoxicology,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
June 2003, Acta obstetricia et gynecologica Scandinavica,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
January 2001, Advances in experimental medicine and biology,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
January 1998, Microbiology and immunology,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
June 1989, The Journal of experimental medicine,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
May 1994, Journal of medical virology,
A Nakane, and M Okamoto, and M Asano, and M Kohanawa, and T Minagawa
January 1991, Pathobiology : journal of immunopathology, molecular and cellular biology,
Copied contents to your clipboard!