Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. 1995

J W Peterson, and S C Whipp
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555-1019.

The mechanisms which enable cholera toxin (CT) and the Escherichia coli heat-stable enterotoxins (STa and STb) to stimulate intestinal secretion of water and electrolytes are only partially understood. CT evokes the synthesis of 3',5'-cyclic AMP (cAMP), and STa is known to elevate intestinal levels of 3',5'-cyclic GMP (cGMP). Neither of these recognized second messengers appears to mediate E. coli STb responses. We compared the secretory effects of CT, STa, and STb using the pig intestinal loop model and also measured the effects of toxin challenge on the synthesis of cAMP, cGMP, and prostaglandins (e.g., prostaglandin E2 [PGE2]), as well as on the release of 5-hydroxytryptamine (5-HT) from intestinal enterochromaffin cells. All three enterotoxins elicited fluid accumulation within a 2-h observation period. A combination of maximal doses of STa with STb yielded additive effects on fluid accumulation, which suggested different mechanisms of action for these toxins. Similarly, challenge of pig intestinal loops with a combination of CT and STb resulted in additive effects on fluid accumulation and luminal release of 5-HT. Unlike its effect on intestinal tissues from other animals, CT did not appear to elicit a dose-dependent cAMP response measurable in mucosal extracts from pig small intestine. In contrast, luminal fluid from CT-challenged pig intestinal loops contained dose-related amounts of cAMP and PGE2 that had been secreted from the mucosa. cAMP responses to STa or STb could not be demonstrated in either mucosal tissue or luminal fluid. In contrast, cGMP levels were increased in the intestinal fluid of loops challenged with STa but not in those challenged with STb. While the mechanisms of action of CT and STa are thought to involve impulse transmission via the enteric nervous system, we demonstrated significant stimulation of PGE2 synthesis and 5-HT release for CT and STb but very little for STa. We conclude from these data that the mechanisms of action of STa, STb, and CT are distinct, although the mode of action of STb may have some similarity to that of CT. Since STb stimulated the release of both PGE2 and 5-HT from the intestinal mucosa, the data suggested the potential for an effect of STb on the enteric nervous system.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

J W Peterson, and S C Whipp
January 1979, The American journal of clinical nutrition,
J W Peterson, and S C Whipp
June 1980, Infection and immunity,
J W Peterson, and S C Whipp
January 1987, Pathology and immunopathology research,
J W Peterson, and S C Whipp
April 1984, Biochemical Society transactions,
J W Peterson, and S C Whipp
January 1989, Research in microbiology,
Copied contents to your clipboard!