Identification of two functionally distinct lysine-binding sites in kringle 37 and in kringles 32-36 of human apolipoprotein(a). 1995

A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
Department of Molecular Biology, Boehringer Mannheim GmbH, Federal Republic of Germany.

The well documented association between high plasma levels of lipoprotein(a) (Lp(a)) and cardiovascular disease might be mediated by the lysine binding of apolipoprotein(a) (apo(a)), the plasminogen-like, multikringle glycoprotein in Lp(a). We employed a mutational analysis to localize the lysine-binding domains within human apo(a). Recombinant apo(a) (r-apo(a)) with 17 plasminogen kringle IV-like domains, one plasminogen kringle V-like domain, and a protease domain or mutants thereof were expressed in the human hepatocarcinoma cell line HepG2. The lysine binding of plasma Lp(a) and r-apo(a) in the culture supernatants of transfected HepG2 cells was analyzed by lysine-Sepharose affinity chromatography. Wild type recombinant Lp(a) (r-Lp(a)) revealed lysine binding in the range observed for human plasma Lp(a). A single accessible lysine binding site in Lp(a) is indicated by a complete loss of lysine binding observed for r-Lp(a) species that contain either a truncated r-apo(a) lacking kringle IV-37, kringle V, and the protease or a point-mutated r-apo(a) with a Trp-4174-->Arg substitution in the putative lysine-binding pocket of kringle IV-37. Evidence is also presented for additional lysine-binding sites within kringles 32-36 of apo(a) that are masked in Lp(a) as indicated by an increased lysine binding for the point mutant (Cys-4057-->Ser), which is unable to assemble into particles. An important role of these lysine-binding site(s) for Lp(a) assembly is suggested by a decreased assembly efficiency for deletion mutants lacking either kringle 32 or kringles 32-35.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography

Related Publications

A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
January 1988, Proteins,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
December 2020, Journal of lipid research,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
January 2003, Cell biochemistry and biophysics,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
August 1985, Biochimica et biophysica acta,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
July 1994, Clinical genetics,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
November 1981, The Journal of biological chemistry,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
April 2011, Biological chemistry,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
October 2005, The Journal of biological chemistry,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
September 2023, Biophysical journal,
A Ernst, and M Helmhold, and C Brunner, and A Pethö-Schramm, and V W Armstrong, and H J Müller
September 2003, The Journal of biological chemistry,
Copied contents to your clipboard!