Genistein as an inducer of tumor cell differentiation: possible mechanisms of action. 1995

A Constantinou, and E Huberman
Department of Surgical Oncology, College of Medicine, University of Illinois at Chicago 60612.

Decreased activity of either topoisomerases or tyrosine kinases has been implicated in the differentiation of a number of cell types. It is therefore conceivable that genistein, because of its reported ability to inhibit these activities in vitro, may be an inducer of cellular differentiation. We investigated this possibility in human promyelocytic HL-60 and erythroid K-562 leukemia cells and in human SK-MEL-131 melanoma cells. Our results indicated that genistein, in a dose-dependent manner, inhibited cell multiplication and induced cell differentiation. The maturing HL-60 cells acquired granulocytic and monocytic markers. The differentiating K-562 cells stained positively with benzidine, which indicates the production of hemoglobin, an erythroid marker. Following genistein treatment, maturing SK-MEL-131 melanoma cells formed dendrite-like structures and exhibited increased tyrosinase activity and melanin content. Experiments were designed to identify the molecular mechanism of genistein's action. Data from our laboratory suggest that this isoflavone triggers the pathway that leads to cellular differentiation by stabilizing protein-linked DNA strand breakage. Other possible mechanisms reported in the literature are discussed.

UI MeSH Term Description Entries
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004968 Estrogens, Non-Steroidal Non-steroidal compounds with estrogenic activity. Estrogens, Nonsteroidal,Estrogens, Non Steroidal,Non-Steroidal Estrogens,Nonsteroidal Estrogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D019833 Genistein An isoflavonoid derived from soy products. It inhibits PROTEIN-TYROSINE KINASE and topoisomerase-II (DNA TOPOISOMERASES, TYPE II); activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 PHASE arrest in human and murine cell lines and inhibits PROTEIN-TYROSINE KINASE. Genestein

Related Publications

A Constantinou, and E Huberman
January 1985, Progress in clinical and biological research,
A Constantinou, and E Huberman
April 1992, Cancer research,
A Constantinou, and E Huberman
September 2014, Medical hypotheses,
A Constantinou, and E Huberman
March 1981, British journal of clinical pharmacology,
A Constantinou, and E Huberman
August 1988, Biochemistry international,
A Constantinou, and E Huberman
January 1982, Carcinogenesis; a comprehensive survey,
A Constantinou, and E Huberman
January 2001, The Journal of nutrition,
A Constantinou, and E Huberman
February 2001, The Journal of organic chemistry,
A Constantinou, and E Huberman
September 2010, Experimental oncology,
Copied contents to your clipboard!