Rapid assay for gamma-aminobutyric acid in mouse brain synaptosomes using gas chromatography-mass spectrometry. 1994

J Palaty, and R Burton, and F S Abbott
Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.

A sensitive and efficient assay for gamma-aminobutyric acid (GABA) was applied to fresh mouse whole brain synaptosomes where the extracted GABA was analyzed as its di(tert.-butyl(dimethylsilyl)) derivative by gas chromatography-mass spectrometry (GC-MS) using GABA-d6 as an internal standard. Endogenous levels of 20.01 +/- 0.75 nmol GABA/mg protein were found. The method is characterized by a detection limit of about 10 fmol injected GABA derivative and coefficients of intra-day and inter-day variation of 0.95% and 7.7%, respectively. The rate of synaptosomal GABA synthesis was used to determine the activity of glutamate decarboxylase (GAD) as 314.9 +/- 9.0 nmol GABA/mg protein/h. Both GABA levels and GAD activity were significantly elevated by therapeutic doses of the antiepileptic drug valproic acid.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D005463 Fluoroacetates Derivatives of acetic acid with one or more fluorines attached. They are almost odorless, difficult to detect chemically, and very stable. The acid itself, as well as the derivatives that are broken down in the body to the acid, are highly toxic substances, behaving as convulsant poisons with a delayed action. (From Miall's Dictionary of Chemistry, 5th ed)
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D000081 Acetamides Derivatives of acetamide that are used as solvents, as mild irritants, and in organic synthesis.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Palaty, and R Burton, and F S Abbott
October 1990, Research communications in chemical pathology and pharmacology,
J Palaty, and R Burton, and F S Abbott
March 1978, Biomedical mass spectrometry,
J Palaty, and R Burton, and F S Abbott
December 1989, Journal of chromatography,
J Palaty, and R Burton, and F S Abbott
January 1999, Journal of pharmacological and toxicological methods,
J Palaty, and R Burton, and F S Abbott
December 1972, The Journal of reproductive medicine,
J Palaty, and R Burton, and F S Abbott
November 2003, Clinical biochemistry,
J Palaty, and R Burton, and F S Abbott
August 1986, Journal of neurochemistry,
J Palaty, and R Burton, and F S Abbott
January 2002, Methods in enzymology,
Copied contents to your clipboard!