Vasopressin-induced calcium signaling in cultured hippocampal neurons. 1994

R D Brinton, and T M Gonzalez, and W S Cheung
Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles 90033, USA.

We recently demonstrated that the neural peptide vasopressin (AVP) can act as a neurotrophic factor for hippocampal nerve cells in culture. Because the neurotrophic effect of vasopressin is mediated by the V1 receptor [11], we investigated AVP activation of calcium signaling pathways in cultured hippocampal neurons. Results of this investigation demonstrate that exposure of cultured hippocampal neurons prelabeled with [3H]myo-inositol to vasopressin induced a significant accumulation of [3H]inositol-1-phosphate ([3H]IP1). The selective V1 vasopressin receptor agonist, [Phe2, Orn2]vasotocin, induced a significant accumulation of [3H]IP1 whereas a selective V2 vasopressin receptor agonist, [deamino1, D-Arg8]-vasopressin, did not. Moreover, V1 agonist-induced accumulation of [3H]IP1 was blocked by the selective V1 vasopressin receptor antagonist d(CH2)5[Tyr(Me)2]-vasopressin. V1 agonist-induced accumulation of [3H]IP1 was concentration dependent and exhibited a steep inverted U-shaped curve that included both stimulation and inhibition of [3H]IP1 accumulation. Time course analysis of V1 agonist-induced accumulation of [3H]IP1 revealed significant increase by 20 min which continued to be significantly elevated for 60 min. Investigation of the effect of closely related peptides on [3H]IP1 accumulation indicated that the vasopressin metabolite peptide AVP4-9 and oxytocin significantly increased [3H]IP1 accumulation whereas the vasopressin metabolite peptide AVP4-8 did not. AVP4-9 and oxytocin induced [3H]IP1 accumulation were blocked by the V1 vasopressin receptor antagonist d(CH2)5[Tyr(Me)2]-vasopressin. V1 receptor activation was associated with a pronounced rise in intracellular calcium. Results of calcium fluorometry studies indicated that V1 agonist exposure induced a marked and sustained rise in intracellular calcium that exhibited oscillations.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017483 Receptors, Vasopressin Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors. Antidiuretic Hormone Receptors,Receptors, V1,Receptors, V2,V1 Receptors,V2 Receptors,Vasopressin Receptors,8-Arg-Vasopressin Receptor,Antidiuretic Hormone Receptor,Antidiuretic Hormone Receptor 1a,Antidiuretic Hormone Receptor 1b,Arginine Vasopressin Receptor,Argipressin Receptor,Argipressin Receptors,Receptor, Arginine(8)-Vasopressin,Renal-Type Arginine Vasopressin Receptor,V1 Receptor,V1a Vasopressin Receptor,V1b Vasopressin Receptor,V2 Receptor,Vascular-Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor,Vasopressin Receptor 1,Vasopressin Type 1A Receptor,Vasopressin V1a Receptor,Vasopressin V1b Receptor,Vasopressin V2 Receptor,Vasopressin V3 Receptor,8 Arg Vasopressin Receptor,Hormone Receptor, Antidiuretic,Hormone Receptors, Antidiuretic,Receptor, Antidiuretic Hormone,Receptor, Arginine Vasopressin,Receptor, Argipressin,Receptor, V1,Receptor, V2,Receptor, Vasopressin,Receptor, Vasopressin V1b,Receptor, Vasopressin V3,Receptors, Antidiuretic Hormone,Receptors, Argipressin,Renal Type Arginine Vasopressin Receptor,V1b Receptor, Vasopressin,Vascular Hepatic Type Arginine Vasopressin Receptor,Vasopressin Receptor, V1b
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R D Brinton, and T M Gonzalez, and W S Cheung
May 1998, Brain research,
R D Brinton, and T M Gonzalez, and W S Cheung
April 1994, Journal of neurobiology,
R D Brinton, and T M Gonzalez, and W S Cheung
January 2013, Biological & pharmaceutical bulletin,
R D Brinton, and T M Gonzalez, and W S Cheung
July 1999, Brain research bulletin,
R D Brinton, and T M Gonzalez, and W S Cheung
July 2002, Brain research,
R D Brinton, and T M Gonzalez, and W S Cheung
January 1993, Brain research. Developmental brain research,
R D Brinton, and T M Gonzalez, and W S Cheung
September 1992, Journal of neurochemistry,
R D Brinton, and T M Gonzalez, and W S Cheung
November 2009, Brain research,
R D Brinton, and T M Gonzalez, and W S Cheung
November 2004, Journal of neuroimmunology,
Copied contents to your clipboard!