Targeted transposition at the vestigial locus of Drosophila melanogaster. 1994

T R Heslip, and R B Hodgetts
Department of Genetics, University of Alberta, Edmonton, Canada.

Targeted transposition is the replacement of one P element with another. We are exploiting this unique property of P elements to study the complex regulatory domain of the Dopa decarboxylase (Ddc) gene in Drosophila melanogaster. P element constructs targeted to the same site in the genome will be subjected to the same position effect. This allows the subtle effects typical of most mutations in the Ddc regulatory region to be measured in the absence of the variable influences of position effects which are associated with the current method of germline transformation. We have investigated some of the parameters affecting targeted transposition of a Ddc transposon, P[Ddc], into a P element allele at the vestigial locus. These events were detected by an increased mutant vg phenotype. The location of the donor transposon in cis or in trans to the target had little effect on the frequency of targeting. Likewise, the mobility of different donor elements, as measured by their rate of transposition to a different chromosome, varied nearly 20-fold, while the rate of targeted transposition was very similar between them. All targeted alleles were precise replacements of the target P element by P[Ddc], but in several cases the donor was inserted in the opposite orientation. The targeted alleles could be described as the result of a replicative, conversion-like event.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004296 Dopa Decarboxylase One of the AROMATIC-L-AMINO-ACID DECARBOXYLASES, this enzyme is responsible for the conversion of DOPA to DOPAMINE. It is of clinical importance in the treatment of Parkinson's disease. Decarboxylase, Dopa
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions
D017344 Genes, Insect The functional hereditary units of INSECTS. Insect Genes,Gene, Insect,Insect Gene

Related Publications

T R Heslip, and R B Hodgetts
August 2005, Genetics,
T R Heslip, and R B Hodgetts
March 1990, Molecular & general genetics : MGG,
T R Heslip, and R B Hodgetts
October 1999, Genetika,
T R Heslip, and R B Hodgetts
August 1999, Doklady Akademii nauk,
T R Heslip, and R B Hodgetts
October 1993, Molecular & general genetics : MGG,
T R Heslip, and R B Hodgetts
July 1946, Genetics,
T R Heslip, and R B Hodgetts
October 1989, Molecular & general genetics : MGG,
Copied contents to your clipboard!