Regulation of Saccharomyces cerevisiae flavohemoglobin gene expression. 1995

M J Crawford, and D R Sherman, and D E Goldberg
Howard Hughes Medical Institute, Department of Medicine, Washington University Medical School, St. Louis, Missouri 63110.

The Saccharomyces cerevisiae hemoglobin is a flavoprotein of unknown function. It shares extensive sequence homology with the globin of Candida as well as those of several bacterial species. We have studied its gene regulation in order to better understand its purpose in the cell. Transcriptional analyses indicate that, in sharp contrast to the bacterial globins of Vitreoscilla and Alcaligenes eutrophus, the S. cerevisiae globin message is induced during logarithmic growth and under oxygen-replete conditions. Transcription of the S. cerevisiae hemoglobin gene is positively regulated by the transcription factors heme-activated protein (HAP) 1 and HAP2/3/4, which respond to intracellular heme levels. Anaerobically, there is a low level, HAP-independent induction of hemoglobin mRNA. Unlike other systems influenced by the HAP2/3/4 transcription factor complex, no activation of hemoglobin expression by growth in non-fermentable carbon sources is observed. Flavohemoglobin gene disruption does not alter cell viability or growth in a variety of oxygen conditions and carbon sources. Physical and genetic mapping of the S. cerevisiae flavohemoglobin gene places it on chromosome seven near the formyltetrahydrofolate synthase (ADE3) locus. These data indicate that, despite the high degree of homology, the S. cerevisiae globin may have a function distinct from those proposed for bacterial globins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005420 Flavoproteins Flavoprotein
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

M J Crawford, and D R Sherman, and D E Goldberg
January 1994, International review of cytology,
M J Crawford, and D R Sherman, and D E Goldberg
March 1992, Microbiological reviews,
M J Crawford, and D R Sherman, and D E Goldberg
November 1993, Current genetics,
M J Crawford, and D R Sherman, and D E Goldberg
July 1997, Molecular & general genetics : MGG,
M J Crawford, and D R Sherman, and D E Goldberg
May 1991, Biochimica et biophysica acta,
M J Crawford, and D R Sherman, and D E Goldberg
August 1997, Biochemical Society transactions,
M J Crawford, and D R Sherman, and D E Goldberg
January 2016, International journal of proteomics,
M J Crawford, and D R Sherman, and D E Goldberg
April 1990, Journal of general microbiology,
M J Crawford, and D R Sherman, and D E Goldberg
May 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
M J Crawford, and D R Sherman, and D E Goldberg
January 1985, Biotechnology & genetic engineering reviews,
Copied contents to your clipboard!