Phenotypic features of breast cancer cells overexpressing ornithine-decarboxylase. 1995

A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
Department of Medicine, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033.

Polyamines (PA) have been shown to be critical mediators of estradiol-induced breast cancer cell proliferation. This finding suggests that constitutive activation of the PA pathway may promote tumor progression, possibly leading to hormone independence. To test this hypothesis, we transfected hormone-responsive MCF-7 breast cancer cells with a complementary DNA coding for ornithine-decarboxylase (ODC), the first rate-limiting enzyme in PA biosynthesis. Marked ODC overexpression observed in stably transfected clones was associated with a selective increase in cellular putrescine content, while spermidine and spermine levels were not altered. ODC-overexpressing MCF-7 cells were resistant to the antiproliferative effects of low but not high concentrations of the enzyme inhibitor, alpha-difluoromethylornithine. In agreement with our hypothesis, sensitivity to the growth-promoting action of estradiol was reduced by approximately one third (P < 0.001) in ODC-overexpressing MCF-7 cells compared with vector-only transfected clones. Basal growth under anchorage-dependent conditions was only marginally increased by ODC overexpression (P = 0.048), while clonogenicity in soft agar was actually reduced. These data suggest that activation of PA biosynthesis may contribute in part to the acquisition of estrogen independence by breast cancer cells. Since only putrescine content was increased as a result of ODC overexpression, these data may underestimate the overall influence of the PA pathway on breast cancer phenotype.

UI MeSH Term Description Entries
D009955 Ornithine Decarboxylase A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine. Ornithine Carboxy-lyase,Carboxy-lyase, Ornithine,Decarboxylase, Ornithine,Ornithine Carboxy lyase
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011073 Polyamines Amine compounds that consist of carbon chains or rings containing two or more primary amino groups. Polyamine
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D000518 Eflornithine An inhibitor of ORNITHINE DECARBOXYLASE, the rate limiting enzyme of the polyamine biosynthetic pathway. Difluoromethylornithine,alpha-Difluoromethylornithine,DL-alpha-Difluoromethylornithine,Eflornithine Hydrochloride,Eflornithine Monohydrochloride, Monohydrate,MDL-71,782 A,Ornidyl,RMI 71782,Vaniqa,alpha-Difluoromethyl Ornithine,DL alpha Difluoromethylornithine,MDL 71,782 A,MDL71,782 A,Ornithine, alpha-Difluoromethyl,alpha Difluoromethyl Ornithine,alpha Difluoromethylornithine
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
March 2008, Acta biochimica et biophysica Sinica,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
November 2003, Journal of biochemistry,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
August 1995, Cancer letters,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
November 2021, Breast cancer research and treatment,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
January 2009, Familial cancer,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
November 1989, Cancer research,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
September 2003, BMC cancer,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
November 1991, Breast cancer research and treatment,
A Manni, and R Wechter, and L Wei, and D Heitjan, and L Demers
January 1984, Cell biochemistry and function,
Copied contents to your clipboard!