In order to attain joining the super-elastic Ti-Ni alloy wire to the Co-Cr alloy wire and be able to maintain the super-elasticity of the Ti-Ni alloy wire, a new soldering method was devised. The silver solder was first molten on the 0.016 x 0.022 inch Co-Cr alloy wire (Co-Cr) and then flowed onto the 0.016 x 0.022 inch super-elastic Ti-Ni alloy wire (Ti-Ni) to form soldering. The specimens of soldered Ti-Ni to Co-Cr butt joint, TN-CC, were examined for its super-elasticity, torsional strength, tensile strength and the metallographic structure of the soldered joint. The findings were as follows: 1. TN-CC still maintained its super-elasticity. 2. The torsional strength of TN-CC was equal to that of Ti-Ni. The tensile strength of TN-CC was 73% of that of Ti-Ni. 3. The tensile strength of TN-CC immersed in 1%NaCl solution at 37 degrees C for 30 days was considered to be still strong enough for clinical use. 4. During the tensile strength test, the breakage of TN-CC occurred at the area of merger of the solder and Ti-Ni. As the reason for this breakage, it suggested that Ti-Ni was stretched and narrowed at the soldered area and that the Sn-rich phase in the solder was induced along Ti-Ni. 5. This new soldering method was shown to be useful in clinical cases, and the fabrication of new orthodontic appliance using two distinct types of wire, one to independently move teeth and the other to be the anchorage, has already been developed.