Electrophysiological and histochemical properties of postnatal rat serotonergic neurons in dissociated cell culture. 1994

M D Johnson
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.

Serotonin modulates a variety of neural processes, and is present in a subpopulation of neurons in the raphe nuclei. To study their electrophysiological properties, cells from the mesopontine raphe nuclei of the neonatal rat were dissociated and grown for up to 10 weeks in microcultures. Approximately one third of the neurons were identified as serotonergic based on the presence of serotonin immunoreactivity, tryptophan hydroxylase immunoreactivity, or a high affinity monoamine transporter. About 5% of cultured raphe neurons contained tyrosine hydroxylase immunoreactivity, while 25% contained GABA immunoreactivity. However, no neurons contained both serotonin and tyrosine hydroxylase staining, and less than 1% displayed both serotonin and GABA immunoreactivities. Cultured serotonergic neurons did not exhibit pacemaker firing in the presence of alpha 1 adrenergic receptor agonists such as phenylephrine or norepinephrine. Approximately one third were hyperpolarized by serotonin or the selective serotonin1A receptor agonist, (+/-)-8-hydroxy-2-(di-N-propylamino)tetralin. Virtually all serotonergic neurons responded to application of glutamate, kainate, N-methyl-D-aspartate, GABA, and glycine. Depolarizing and hyperpolarizing synaptic potentials blocked by glutamate or GABAA receptor antagonists were frequently observed in both serotonergic and non-serotonergic raphe neurons. Slow inhibitory postsynaptic potentials were evoked by activating single presynaptic serotonergic neurons with a brief intracellular current pulse. The slow inhibitory synaptic potential had a mean latency to onset of 35 +/- 5 ms, a duration of 0.8-2.6 s, and was inhibited by the serotonin1A autoreceptor antagonists, (-)propranolol and spiperone. The rising and falling phases of the inhibitory potential could be fit by single exponential functions with mean time constants of 53 +/- 8 ms and 504 +/- 78 ms, respectively. Serotonin1A receptor-mediated autoinhibition was observed in microcultures containing a solitary serotonergic neuron, and thus constituted synaptic serotonin release, responsiveness, and re-uptake by a single vertebrate neuron. In summary, histochemical and electrophysiological evidence was obtained for catecholaminergic, GABAergic, and glutamatergic non-serotonergic raphe neurons in culture, many of which formed functional synaptic connections with neighboring cells. Additionally, cultured mesopontine serotonergic neurons expressed many of the cytochemical markers, neurotransmitter receptors, and synaptic functions observed in such cells in vivo, but the proportion of neurons sensitive to serotonergic and adrenergic agonists was significantly less than that reported in vivo. For the first time, the kinetics and pharmacology of serotonergic synaptic transmission by a single vertebrate serotonergic raphe neuron were determined, and found to resemble those observed after extracellular stimulation of populations of raphe neurons in slices and in vivo.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Copied contents to your clipboard!