Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonenhanced T1-weighted images. 1995

J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia 19104-4283.

OBJECTIVE To define the relationship between magnetization transfer and blood-brain-barrier breakdown in multiple sclerosis lesions using gadolinium enhancement as an index of the latter. METHODS Two hundred twenty lesions (high-signal abnormalities on T2-weighted images) in 35 multiple sclerosis patients were studied with gadolinium-enhanced spin-echo imaging and magnetization transfer. Lesions were divided into groups having nodular or uniform enhancement, ring enhancement, or no enhancement after gadolinium administration. For 133 lesions, T1-weighted images without contrast enhancement were also analyzed. These lesions were categorized as isointense or hypointense based on their appearance on the unenhanced T1-weighted images. RESULTS There was no difference between the magnetization transfer ratio (MTR) of lesions as a function of enhancement. MTR of hypointense lesions on unenhanced T1-weighted images was, however, lower than the MTR of isointense lesions. CONCLUSIONS We speculate that diminished MTR may reflect diminished myelin content and that hypointensity on T1-weighted images corresponds to demyelination. Central regions of ring-enhancing lesions had a lower MTR than the periphery, suggesting that demyelination in multiple sclerosis lesions occurs centrifugally. In addition, the short-repetition-time pulse sequence seems useful in the evaluation of myelin loss in patients with multiple sclerosis.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations

Related Publications

J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
January 1999, AJNR. American journal of neuroradiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
April 1998, AJNR. American journal of neuroradiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
January 1997, Journal of magnetic resonance imaging : JMRI,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
April 2017, European radiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
September 2007, Radiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
February 1994, Radiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
January 1997, AJNR. American journal of neuroradiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
August 1995, AJNR. American journal of neuroradiology,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
May 1998, Journal of neurology, neurosurgery, and psychiatry,
J F Hiehle, and R I Grossman, and K N Ramer, and F Gonzalez-Scarano, and J A Cohen
January 1996, Journal of computer assisted tomography,
Copied contents to your clipboard!