Substrate utilization during exercise in active people. 1995

E F Coyle
Department of Kinesiology and Health Education, University of Texas at Austin 78712.

When people walk at low intensity after fasting, the energy needed is provided mostly by oxidation of plasma fatty acids. As exercise intensity increases (eg, to moderate running), plasma fatty acid turnover does not increase and the additional energy is obtained by utilization of muscle glycogen, blood glucose, and intramuscular triglyceride. Further increases in exercise intensity are fueled mostly by increases in muscle glycogen utilization with some additional increase in blood glucose oxidation. Muscle glycogen and blood glucose contribute equally to carbohydrate energy production over 2-3 h of moderate-intensity exercise; fatigue develops when these substrates are depleted. Active people can deplete muscle glycogen with 30-60 min of high intensity, intermittent exercise. When the ingestion of dietary carbohydrate is optimal, it is possible to resynthesize muscle glycogen to high concentrations in approximately 24 h, which is the major factor in recovery of exercise tolerance. However, this requires that a 70-kg person eat at least 50 g carbohydrate per every 2 h, beginning soon after exercise, and ingest 500-600 g in 24 h (ie; approximately 7-9 g/kg body wt). Carbohydrate foods eliciting high glycemic and insulinemic responses promote more rapid glycogen resynthesis than do foods eliciting lower glycemic responses. Therefore, foods ingested for energy before, during, or after exercise should be classified according to their glycemic index. Although carbohydrate ingestion before and during exercise adds exogenous substrate to the body, it usually attenuates plasma fatty acid mobilization and oxidation.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009747 Nutritional Physiological Phenomena The processes and properties of living organisms by which they take in and balance the use of nutritive materials for energy, heat production, or building material for the growth, maintenance, or repair of tissues and the nutritive properties of FOOD. Nutrition Physiological Phenomena,Nutrition Physiology,Nutrition Processes,Nutritional Physiology Phenomena,Nutrition Phenomena,Nutrition Physiological Concepts,Nutrition Physiological Phenomenon,Nutrition Process,Nutritional Phenomena,Nutritional Physiological Phenomenon,Nutritional Physiology,Nutritional Physiology Concepts,Nutritional Physiology Phenomenon,Nutritional Process,Nutritional Processes,Concept, Nutrition Physiological,Concept, Nutritional Physiology,Concepts, Nutrition Physiological,Concepts, Nutritional Physiology,Nutrition Physiological Concept,Nutritional Physiology Concept,Phenomena, Nutrition,Phenomena, Nutrition Physiological,Phenomena, Nutritional,Phenomena, Nutritional Physiological,Phenomena, Nutritional Physiology,Phenomenon, Nutrition Physiological,Phenomenon, Nutritional Physiological,Phenomenon, Nutritional Physiology,Physiological Concept, Nutrition,Physiological Concepts, Nutrition,Physiological Phenomena, Nutrition,Physiological Phenomena, Nutritional,Physiological Phenomenon, Nutrition,Physiological Phenomenon, Nutritional,Physiology Concept, Nutritional,Physiology Concepts, Nutritional,Physiology Phenomena, Nutritional,Physiology Phenomenon, Nutritional,Physiology, Nutrition,Physiology, Nutritional,Process, Nutrition,Process, Nutritional,Processes, Nutrition,Processes, Nutritional
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006003 Glycogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise

Related Publications

E F Coyle
January 1977, Annals of the New York Academy of Sciences,
E F Coyle
January 1972, Scandinavian journal of clinical and laboratory investigation,
E F Coyle
January 1990, Exercise and sport sciences reviews,
E F Coyle
July 1990, Clinical science (London, England : 1979),
E F Coyle
July 2002, The Journal of experimental biology,
E F Coyle
December 1990, Journal of applied physiology (Bethesda, Md. : 1985),
E F Coyle
March 2001, Journal of applied physiology (Bethesda, Md. : 1985),
E F Coyle
July 2010, Metabolism: clinical and experimental,
E F Coyle
February 2009, Medicine and science in sports and exercise,
Copied contents to your clipboard!