Paradoxical insulin-induced increase in gluconeogenesis in response to prolonged hypoglycemia in conscious dogs. 1995

S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232.

The aim of this study was to determine the effects of differing insulin concentrations on the gluconeogenic response to equivalent prolonged hypoglycemia. Insulin was infused intraportally, for 3 h, into normal 18-h fasted conscious dogs at 2 (lower, n = 6) or 8 mU.kg-1.min-1 (high, n = 7) on separate occasions. This resulted in steady-state arterial insulin levels of 80 +/- 8 and 610 +/- 55 microU/ml, respectively. Glucose was infused during high dose to maintain the hypoglycemic plateau (50 +/- 1 mg/dl) equivalent to lower. Epinephrine (806 +/- 180 vs. 2,589 +/- 260 pg/ml), norepinephrine (303 +/- 55 vs. 535 +/- 60 pg/ml), cortisol (5.8 +/- 1.2 vs. 12.1 +/- 1.5 micrograms/dl), and pancreatic polypeptide (598 +/- 250 vs. 1,198 +/- 150 pg/ml) were all increased (P < 0.05) in the presence of high-dose insulin. Net hepatic glucose production increased significantly from 2.2 +/- 0.3 to 3.8 +/- 0.5 mg.kg-1.min-1 (P < 0.05) during high-dose infusion but remained at basal levels (2.3 +/- 0.4 mg.kg-1.min-1) during lower-dose insulin. During the 3rd h of hypoglycemia, gluconeogenesis accounted for between 42 and 100% of glucose production during high-dose infusion but only 22-52% during lower-dose insulin. Intrahepatic gluconeogenic efficiency, however, increased similarly during both protocols. Lipolysis, as indicated by arterial blood glycerol levels, increased by a greater amount during high- compared with lower-dose insulin infusion. Six hyperinsulinemic euglycemic control experiments (2 or 8 mU.kg-1.min-1, n = 3 in each) provided baseline data. Gluconeogenesis remained similar to basal levels, but lipolysis was significantly suppressed during both series of hyperinsulinemic euglycemic studies. In summary, these data suggest that 1) the important counterregulatory processes of gluconeogenesis and lipolysis can be significantly increased during prolonged hypoglycemia despite an eightfold increase in circulating insulin levels and 2) the amplified gluconeogenic rate present during the hypoglycemic high-dose insulin infusions was caused by enhanced substrate delivery to the liver rather than an increase in intrahepatic gluconeogenic efficiency.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007657 Ketone Bodies The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain. Acetone Bodies,Bodies, Acetone,Bodies, Ketone
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010191 Pancreatic Polypeptide A 36-amino acid pancreatic hormone that is secreted mainly by endocrine cells found at the periphery of the ISLETS OF LANGERHANS and adjacent to cells containing SOMATOSTATIN and GLUCAGON. Pancreatic polypeptide (PP), when administered peripherally, can suppress gastric secretion, gastric emptying, pancreatic enzyme secretion, and appetite. A lack of pancreatic polypeptide (PP) has been associated with OBESITY in rats and mice. Pancreatic Polypeptide (PP),Pancreatic Polypeptide Hormone,Pancreatic Prohormone
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
January 1986, Pflugers Archiv : European journal of physiology,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
June 1988, Diabetes,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
January 1991, Neuroendocrinology,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
December 2020, Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
November 2003, Metabolism: clinical and experimental,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
September 1981, Endocrinology,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
February 2011, Experimental biology and medicine (Maywood, N.J.),
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
October 2005, American journal of physiology. Regulatory, integrative and comparative physiology,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
January 1984, Peptides,
S N Davis, and R Dobbins, and C Tarumi, and J Jacobs, and D Neal, and A D Cherrington
July 1998, Diabetes,
Copied contents to your clipboard!