Na+/H+ and Na+/Ca2+ exchange in regulation of [Na+]i and [Ca2+]i during metabolic inhibition. 1995

H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
Third Department of Internal Medicine, Hamamatsu University School of Medicine, Japan.

The relationships among intracellular Na+ and Ca2+ concentrations ([Na+]i and [Ca2+]i, respectively) and cell morphology were investigated during metabolic inhibition (MI) in isolated guinea pig myocytes. [Na+]i and [Ca2+]i were measured using the fluorescent indicators, Na(+)-binding benzofuran isophthalate and fluo 3. During the initial 20 min of MI, [Na+]i increased from 6.2 +/- 0.5 to 18.6 +/- 1.6 mM (n = 31), whereas [Ca2+]i, expressed as the percent change of fluo 3 fluorescence, remained at the low level. In the following 30 min, 94% of the cells developed contracture, and [Ca2+]i began to increase after cells had contracted (167 +/- 14% at 50 min). The level of [Ca2+]i during MI was lower than that during 500 microM strophanthidin perfusion. The increase in [Na+]i was not affected by 10 microM tetrodotoxin but was suppressed by 1 microM hexamethylene amiloride (HMA). The application of 10 mM glucose from the start of MI prevented both the increase in [Na+]i and cell contracture. However, the addition of glucose after 20 min of MI [energy repletion (ER)] led to a dramatic increase in [Ca2+]i (442 +/- 72% at 50 min, n = 31), and 84% of the cells developed contracture. The increase in [Ca2+]i and the cell contracture were suppressed by HMA or Ca(2+)-free solution. Intracellular pH decreased from 7.23 +/- 0.07 to 6.95 +/- 0.09 during MI but did not change after ER (6.90 +/- 0.11 at 35 min, n = 9). These findings suggested that during MI 1) [Na+]i increased by both the activated Na+ influx via Na+/H+ exchange and the suppressed Na+ extrusion via the Na+/K+ pump, 2) Na+/Ca2+ exchange was inhibited by energy depletion and intracellular acidosis, and 3) cell contracture was not related to Ca2+ overload but was related to rigor due to energy depletion.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump

Related Publications

H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
November 1993, Cardiovascular research,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
October 1993, Cardiovascular research,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
December 1989, FEBS letters,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
September 1992, The American journal of physiology,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
February 1999, Biochimica et biophysica acta,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
November 1991, The American journal of physiology,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
September 1992, The American journal of physiology,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
January 1995, Gastroenterology,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
January 1985, Annals of the New York Academy of Sciences,
H Satoh, and H Hayashi, and H Katoh, and H Terada, and A Kobayashi
November 2001, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!