Anisodamine at higher concentrations in inhibiting alpha-adrenergic responses in isolated canine blood vessels. 1993

H Y Guo, and R R Lorenz, and P M Vanhoutte
Department of Pathophysiology, Faculty of Basic Medicine, Peking Union Medical College, Beijing.

The present study was designed to examine the effect of higher concentration of anisodamine on alpha-adrenergic responses in isolated canine blood vessels. Up to 10(-3) mol/L, anisodamine did not significantly affect the responses of saphenous vein to alpha 2-adrenergic agonist UK-14, 304. In contrast, anisodamine (10(-5), 10(-4), 10(-3) mol/L) caused the concentration-response curves of femoral artery to norepinephrine (pA2 = 4.81 +/- 0.11) to phenylephrine (pA2 = 4.86 +/- 0.20) shift markedly. However, the antagonism on the alpha 1-adrenergic responses of canine femoral artery to norepinephrine and phenylephrine by higher concentrations of anisodamine produces dose ratios which yield a linear Schild regression with a slope less than unity, indicating an inequilibrium between agonist, antagonist, and receptors. The probable mechanisms involved are discussed.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011810 Quinoxalines Quinoxaline
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005263 Femoral Artery The main artery of the thigh, a continuation of the external iliac artery. Common Femoral Artery,Arteries, Common Femoral,Arteries, Femoral,Artery, Common Femoral,Artery, Femoral,Common Femoral Arteries,Femoral Arteries,Femoral Arteries, Common,Femoral Artery, Common
D000068438 Brimonidine Tartrate A quinoxaline derivative and ADRENERGIC ALHPA-2 RECEPTOR AGONIST that is used to manage INTRAOCULAR PRESSURE associated with OPEN-ANGLE GLAUCOMA and OCULAR HYPERTENSION. 5-Bromo-6-(2-imidazolin-2-ylamino)quinoxaline D-tartrate,5-bromo-6-(imidazolidinylideneamino)quinoxaline,5-bromo-6-(imidazolin-2-ylamino)quinoxaline,AGN 190342,AGN-190342,Alphagan,Alphagan P,Brimonidine,Brimonidine Purite,Brimonidine Tartrate (1:1),Brimonidine Tartrate (1:1), (S-(R*,R*))-Isomer,Brimonidine Tartrate, (R-(R*,R*))-Isomer,Bromoxidine,Mirvaso,Ratio-Brimonidine,Sanrosa,UK 14,304,UK 14,304-18,UK 14304,UK 14308,UK-14,304-18,UK-14,308,UK-14304,AGN190342,Ratio Brimonidine,UK 14,304 18,UK 14,30418,UK 14,308,UK14,30418,UK14,308,UK14304
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Y Guo, and R R Lorenz, and P M Vanhoutte
January 1976, Proceedings of the Western Pharmacology Society,
H Y Guo, and R R Lorenz, and P M Vanhoutte
January 1995, Basic research in cardiology,
H Y Guo, and R R Lorenz, and P M Vanhoutte
January 1987, General pharmacology,
H Y Guo, and R R Lorenz, and P M Vanhoutte
April 1977, Japanese journal of pharmacology,
H Y Guo, and R R Lorenz, and P M Vanhoutte
January 1986, British journal of clinical pharmacology,
H Y Guo, and R R Lorenz, and P M Vanhoutte
December 1986, The Journal of pharmacology and experimental therapeutics,
H Y Guo, and R R Lorenz, and P M Vanhoutte
May 1988, The Journal of pharmacology and experimental therapeutics,
H Y Guo, and R R Lorenz, and P M Vanhoutte
January 1984, Bibliotheca cardiologica,
H Y Guo, and R R Lorenz, and P M Vanhoutte
March 1977, British journal of anaesthesia,
H Y Guo, and R R Lorenz, and P M Vanhoutte
September 1985, The American journal of physiology,
Copied contents to your clipboard!