Cell proliferation in the gastrulating chick embryo: a study using BrdU incorporation and PCNA localization. 1993

E J Sanders, and M Varedi, and A S French
Department of Physiology, University of Alberta, Edmonton, Canada.

Cell proliferation in the gastrulating chick embryo was assessed using two independent techniques which mark cells in S phase of the mitotic cycle: nuclear incorporation of bromodeoxyuridine (BrdU) detected immunocytochemically and immunolocalization of proliferating cell nuclear antigen (PCNA). Computer-reconstructed maps were produced showing the distribution of labelled nuclei in the primitive streak and the cell layers. These distributions were also normalized to take into account regional differences in cell density across the embryo. Results from a 2 hour pulse of BrdU indicated that although cells at caudal levels of the primitive streak showed the highest incorporation, this region showed a similar proportion of labelled cells to the surrounding caudal regions of the epiblast and mesoderm when normalized for cell density. The entire caudal third of the embryo showed the highest proportion of cells in S phase. Cells of Hensen's node showed a relatively low rate of incorporation and, although the chordamesoderm cells showed many labelled nuclei, this appeared to be a reflection of a high cell density in this region. Combining this result with results from a 4 hour pulse of BrdU permitted mapping of cell generation time across the entire embryo. Generation times ranged from a low value of approximately 2 hours at caudal levels of both the epiblast and mesoderm, to an upper value of approximately 10 hours in the rostral regions of the primitive streak, in the mid-lateral levels of the epiblast and in the chordamesoderm rostral to Hensen's node. Cells at caudal regions of the primitive streak showed a generation time of approximately 5 hours. Taking into account that cells are generally considered to be continuously moving through the primitive streak, we conclude that cell division, as judged by generation time, is greatly reduced during transit through this region, despite the presence there of cells in S phase and M phase. Immunocytochemical localization of PCNA-positive nuclei gave generally similar distributions to those obtained with BrdU incorporation, confirming that this endogenous molecule is a useful S-phase marker during early embryogenesis. Mid-levels and caudal levels of the primitive streak showed the highest numbers of positive nuclei, and the highest proportion of labelling after cell density was accounted for. As with BrdU incorporation, the highest proportions of PCNA-positive nuclei were found towards the caudal regions of the epiblast and mesoderm. These results suggest that the differential growth of the caudal region of the embryo at this time is a direct consequence of elevated levels of cell proliferation in this region.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E J Sanders, and M Varedi, and A S French
January 2018, Methods in molecular biology (Clifton, N.J.),
E J Sanders, and M Varedi, and A S French
January 1983, Wilhelm Roux's archives of developmental biology,
E J Sanders, and M Varedi, and A S French
April 1986, Experientia,
E J Sanders, and M Varedi, and A S French
July 1994, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie,
E J Sanders, and M Varedi, and A S French
October 1987, Teratology,
E J Sanders, and M Varedi, and A S French
January 1990, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
E J Sanders, and M Varedi, and A S French
February 1983, Respiration physiology,
E J Sanders, and M Varedi, and A S French
August 1992, European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP),
E J Sanders, and M Varedi, and A S French
July 1991, Journal of cell science,
Copied contents to your clipboard!