Developmental study of benzodiazepine effects on monosynaptic GABAA-mediated IPSPs of rat hippocampal neurons. 1993

C Rovira, and Y Ben-Ari
Institut National de la Santé et de la Recherche Médicale-U29, Hôpital de Port-Royal, Paris, France.

1. The effects of type I (BZ1) and type II (BZ2) benzodiazepine receptor ligands on monosynaptic gamma-aminobutyric acid (GABA)A-mediated inhibitory postsynaptic potentials (IPSPs) and on responses to exogenously applied GABA were studied using intracellular recordings from CA3 pyramidal cells of rat hippocampal slices taken at different postnatal stages [postnatal day 4 (P4)-P35)]. 2. The effects of midazolam, a BZ1 and BZ2 receptor agonist, were tested on the monosynaptic IPSPs at different stages. Monosynaptic, bicuculline-sensitive IPSPs were evoked by hilar stimulation in presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) antagonists [6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) and D(-)2-amino-5-phosphonopentanoic acid (50 microM)]. Midazolam at 300 nM maximally increased the duration and amplitude of monosynaptic GABAA-mediated IPSPs in neurons from pups (P4-P6, n = 6) and young (P7-P12, n = 8) and adult (P25-P35, n = 9) rats. All the effects of midazolam on IPSPs were reversed by the antagonist Ro 15-1788 (10 microM). 3. The effect of midazolam was also tested on the response to exogenously applied GABA (5 mM) in the presence of tetrodotoxine [TTX (1 microM)]. In neurons from young rats (n = 9), midazolam (1 nM-1 microM) did not change the responses to exogenously applied GABA, whereas in adult rats (n = 8) midazolam maximally increased GABA currents at 30 nM. 4. The effect of zolpidem, a BZ1 receptor agonist, was tested on monosynaptic IPSPs and GABA currents at different stages. Zolpidem (10 nM-1 microM) was inactive in cells from young rats (n = 12). In neurons from adult rats, zolpidem maximally increased the duration and amplitude of the monosynaptic IPSPs at 300 nM (n = 5) and the amplitude of GABA current at 30-100 nM (n = 5). 5. Methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) (300 nM), an inverse agonist of BZ1 and BZ2 receptors, decreased the amplitude and duration of monosynaptic IPSPs in neurons from pups (n = 3) and young (n = 4) and adult (n = 5) rats. In all cases, full recovery was obtained after exposure to R0 15-1788 (10 microM). DMCM (300 nM-10 microM) failed to reduce GABA responses in cells from young (n = 3) or adult (n = 7) rats. 6. Results indicate that the regulation by benzodiazepine of GABAA-mediated IPSPs varies with the developmental stage.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D006993 Hypnotics and Sedatives Drugs used to induce drowsiness or sleep or to reduce psychological excitement or anxiety. Hypnotic,Sedative,Sedative and Hypnotic,Sedatives,Hypnotic Effect,Hypnotic Effects,Hypnotics,Sedative Effect,Sedative Effects,Sedatives and Hypnotics,Effect, Hypnotic,Effect, Sedative,Effects, Hypnotic,Effects, Sedative,Hypnotic and Sedative
D008297 Male Males
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002243 Carbolines A group of pyrido-indole compounds. Included are any points of fusion of pyridine with the five-membered ring of indole and any derivatives of these compounds. These are similar to CARBAZOLES which are benzo-indoles. Carboline,Pyrido(4,3-b)Indole,Beta-Carbolines,Pyrido(4,3-b)Indoles,Beta Carbolines
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

C Rovira, and Y Ben-Ari
May 1994, The European journal of neuroscience,
C Rovira, and Y Ben-Ari
February 2000, Journal of neurophysiology,
C Rovira, and Y Ben-Ari
September 1999, Journal of neurophysiology,
C Rovira, and Y Ben-Ari
May 2003, European journal of pharmacology,
C Rovira, and Y Ben-Ari
May 1993, The Journal of physiology,
C Rovira, and Y Ben-Ari
December 2006, The Journal of physiology,
C Rovira, and Y Ben-Ari
December 2002, Neurochemical research,
Copied contents to your clipboard!