Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture. 1993

T Alexi, and F Hefti
Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089.

Transforming growth factor alpha messenger RNA and protein levels are highest in the striatum, the target area of mesencephalic dopaminergic neurons of the substantia nigra, suggesting a role as a target-derived neurotrophic factor for these cells. To test this hypothesis, we characterized the actions of transforming growth factor alpha on fetal rat dopaminergic neurons in culture. Transforming growth factor alpha promoted dopamine uptake in a dose- and time-dependent manner. Administration of transforming growth factor alpha at the time of plating for 2 h produced a significant increase in dopamine uptake after five days of growth in vitro. As cultures aged they became less responsive to transforming growth factor alpha, such that longer times of exposure were required to elicit a similar, but weaker, response. Dopaminergic cell survival was selectively promoted by transforming growth factor alpha, since there was an increase in the number of tyrosine hydroxylase-immunostained cells without a parallel increase in the total number of neuron-specific enolase-immunopositive cells. Neurite length, branch number and soma area of tyrosine hydroxylase-immunopositive cells also were enhanced by transforming growth factor alpha treatment. Increases in each of the dopaminergic parameters due to transforming growth factor alpha were accompanied by a rise in glial cell number, making it possible that these effects were mediated by this cell population. The neurotrophin antagonist, K252b, failed to inhibit the transforming growth factor alpha-induced increase in dopamine uptake, indicating that transforming growth factor alpha's effects were not mediated by neurotrophin mechanisms. The actions of transforming growth factor alpha on the differentiation of dopaminergic neurons only partially overlapped with those of epidermal growth factor. Thus, while transforming growth factor alpha and epidermal growth factor are believed to share the same receptor they differentially affect dopaminergic cell development in vitro. These results indicate that transforming growth factor alpha is a trophic factor for mesencephalic cells in culture and suggests that transforming growth factor alpha plays a physiological role in the development of these cells in vivo.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002227 Carbazoles Benzo-indoles similar to CARBOLINES which are pyrido-indoles. In plants, carbazoles are derived from indole and form some of the INDOLE ALKALOIDS.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

T Alexi, and F Hefti
January 1995, Journal of neural transmission. Supplementum,
T Alexi, and F Hefti
January 1997, Neurochemistry international,
T Alexi, and F Hefti
December 1993, Journal of neuroscience research,
T Alexi, and F Hefti
October 1995, European journal of gastroenterology & hepatology,
T Alexi, and F Hefti
August 1990, The American journal of physiology,
T Alexi, and F Hefti
January 2012, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!